Enum bdk_wallet::descriptor::Descriptor

pub enum Descriptor<Pk>
where Pk: MiniscriptKey,
{ Bare(Bare<Pk>), Pkh(Pkh<Pk>), Wpkh(Wpkh<Pk>), Sh(Sh<Pk>), Wsh(Wsh<Pk>), Tr(Tr<Pk>), }
Expand description

Script descriptor

Variants§

§

Bare(Bare<Pk>)

A raw scriptpubkey (including pay-to-pubkey) under Legacy context

§

Pkh(Pkh<Pk>)

Pay-to-PubKey-Hash

§

Wpkh(Wpkh<Pk>)

Pay-to-Witness-PubKey-Hash

§

Sh(Sh<Pk>)

Pay-to-ScriptHash(includes nested wsh/wpkh/sorted multi)

§

Wsh(Wsh<Pk>)

Pay-to-Witness-ScriptHash with Segwitv0 context

§

Tr(Tr<Pk>)

Pay-to-Taproot

Implementations§

§

impl<Pk> Descriptor<Pk>
where Pk: MiniscriptKey,

pub fn new_pk(pk: Pk) -> Descriptor<Pk>

Create a new pk descriptor

pub fn new_pkh(pk: Pk) -> Result<Descriptor<Pk>, Error>

Create a new PkH descriptor

pub fn new_wpkh(pk: Pk) -> Result<Descriptor<Pk>, Error>

Create a new Wpkh descriptor Will return Err if uncompressed key is used

pub fn new_sh_wpkh(pk: Pk) -> Result<Descriptor<Pk>, Error>

Create a new sh wrapped wpkh from Pk. Errors when uncompressed keys are supplied

pub fn new_sh(ms: Miniscript<Pk, Legacy>) -> Result<Descriptor<Pk>, Error>

Create a new sh for a given redeem script Errors when miniscript exceeds resource limits under p2sh context or does not type check at the top level

pub fn new_wsh(ms: Miniscript<Pk, Segwitv0>) -> Result<Descriptor<Pk>, Error>

Create a new wsh descriptor from witness script Errors when miniscript exceeds resource limits under p2sh context or does not type check at the top level

pub fn new_sh_wsh(ms: Miniscript<Pk, Segwitv0>) -> Result<Descriptor<Pk>, Error>

Create a new sh wrapped wsh descriptor with witness script Errors when miniscript exceeds resource limits under wsh context or does not type check at the top level

pub fn new_bare(ms: Miniscript<Pk, BareCtx>) -> Result<Descriptor<Pk>, Error>

Create a new bare descriptor from witness script Errors when miniscript exceeds resource limits under bare context or does not type check at the top level

pub fn new_sh_with_wpkh(wpkh: Wpkh<Pk>) -> Descriptor<Pk>

Create a new sh wrapper for the given wpkh descriptor

pub fn new_sh_with_wsh(wsh: Wsh<Pk>) -> Descriptor<Pk>

Create a new sh wrapper for the given wsh descriptor

pub fn new_sh_sortedmulti( k: usize, pks: Vec<Pk> ) -> Result<Descriptor<Pk>, Error>

Create a new sh sortedmulti descriptor with threshold k and Vec of pks. Errors when miniscript exceeds resource limits under p2sh context

pub fn new_sh_wsh_sortedmulti( k: usize, pks: Vec<Pk> ) -> Result<Descriptor<Pk>, Error>

Create a new sh wrapped wsh sortedmulti descriptor from threshold k and Vec of pks Errors when miniscript exceeds resource limits under segwit context

pub fn new_wsh_sortedmulti( k: usize, pks: Vec<Pk> ) -> Result<Descriptor<Pk>, Error>

Create a new wsh sorted multi descriptor Errors when miniscript exceeds resource limits under p2sh context

pub fn new_tr( key: Pk, script: Option<TapTree<Pk>> ) -> Result<Descriptor<Pk>, Error>

Create new tr descriptor Errors when miniscript exceeds resource limits under Tap context

pub fn desc_type(&self) -> DescriptorType

Get the [DescriptorType] of Descriptor

pub fn sanity_check(&self) -> Result<(), Error>

Checks whether the descriptor is safe.

Checks whether all the spend paths in the descriptor are possible on the bitcoin network under the current standardness and consensus rules. Also checks whether the descriptor requires signatures on all spend paths and whether the script is malleable.

In general, all the guarantees of miniscript hold only for safe scripts. The signer may not be able to find satisfactions even if one exists.

pub fn max_weight_to_satisfy(&self) -> Result<Weight, Error>

Computes an upper bound on the difference between a non-satisfied TxIn’s segwit_weight and a satisfied TxIn’s segwit_weight

Since this method uses segwit_weight instead of legacy_weight, if you want to include only legacy inputs in your transaction, you should remove 1WU from each input’s max_weight_to_satisfy for a more accurate estimate.

In other words, for segwit inputs or legacy inputs included in segwit transactions, the following will hold for each input if that input was satisfied with the largest possible witness:

for i in 0..transaction.input.len() {
    assert_eq!(
        descriptor_for_input[i].max_weight_to_satisfy(),
        transaction.input[i].segwit_weight() - TxIn::default().segwit_weight()
    );
}

Instead, for legacy transactions, the following will hold for each input if that input was satisfied with the largest possible witness:

for i in 0..transaction.input.len() {
    assert_eq!(
        descriptor_for_input[i].max_weight_to_satisfy(),
        transaction.input[i].legacy_weight() - TxIn::default().legacy_weight()
    );
}

Assumes all ECDSA signatures are 73 bytes, including push opcode and sighash suffix. Assumes all Schnorr signatures are 66 bytes, including push opcode and sighash suffix.

§Errors

When the descriptor is impossible to safisfy (ex: sh(OP_FALSE)).

pub fn max_satisfaction_weight(&self) -> Result<usize, Error>

👎Deprecated since 10.0.0: Use max_weight_to_satisfy instead. The method to count bytes was redesigned and the results will differ from max_weight_to_satisfy. For more details check rust-bitcoin/rust-miniscript#476.

Computes an upper bound on the weight of a satisfying witness to the transaction.

Assumes all ec-signatures are 73 bytes, including push opcode and sighash suffix. Includes the weight of the VarInts encoding the scriptSig and witness stack length.

§Errors

When the descriptor is impossible to safisfy (ex: sh(OP_FALSE)).

§

impl<Pk> Descriptor<Pk>
where Pk: MiniscriptKey + ToPublicKey,

pub fn address(&self, network: Network) -> Result<Address, Error>

Computes the Bitcoin address of the descriptor, if one exists

Some descriptors like pk() don’t have an address.

§Errors

For raw/bare descriptors that don’t have an address.

pub fn script_pubkey(&self) -> ScriptBuf

Computes the scriptpubkey of the descriptor.

pub fn unsigned_script_sig(&self) -> ScriptBuf

Computes the scriptSig that will be in place for an unsigned input spending an output with this descriptor. For pre-segwit descriptors, which use the scriptSig for signatures, this returns the empty script.

This is used in Segwit transactions to produce an unsigned transaction whose txid will not change during signing (since only the witness data will change).

pub fn explicit_script(&self) -> Result<ScriptBuf, Error>

Computes the the underlying script before any hashing is done. For Bare, Pkh and Wpkh this is the scriptPubkey; for ShWpkh and Sh this is the redeemScript; for the others it is the witness script.

§Errors

If the descriptor is a taproot descriptor.

pub fn script_code(&self) -> Result<ScriptBuf, Error>

Computes the scriptCode of a transaction output.

The scriptCode is the Script of the previous transaction output being serialized in the sighash when evaluating a CHECKSIG & co. OP code.

§Errors

If the descriptor is a taproot descriptor.

pub fn get_satisfaction<S>( &self, satisfier: S ) -> Result<(Vec<Vec<u8>>, ScriptBuf), Error>
where S: Satisfier<Pk>,

Returns satisfying non-malleable witness and scriptSig to spend an output controlled by the given descriptor if it possible to construct one using the satisfier S.

pub fn get_satisfaction_mall<S>( &self, satisfier: S ) -> Result<(Vec<Vec<u8>>, ScriptBuf), Error>
where S: Satisfier<Pk>,

Returns a possilbly mallable satisfying non-malleable witness and scriptSig to spend an output controlled by the given descriptor if it possible to construct one using the satisfier S.

pub fn satisfy<S>(&self, txin: &mut TxIn, satisfier: S) -> Result<(), Error>
where S: Satisfier<Pk>,

Attempts to produce a non-malleable satisfying witness and scriptSig to spend an output controlled by the given descriptor; add the data to a given TxIn output.

§

impl Descriptor<DefiniteDescriptorKey>

pub fn plan<P>( self, provider: &P ) -> Result<Plan, Descriptor<DefiniteDescriptorKey>>
where P: AssetProvider<DefiniteDescriptorKey>,

Returns a plan if the provided assets are sufficient to produce a non-malleable satisfaction

If the assets aren’t sufficient for generating a Plan, the descriptor is returned

pub fn plan_mall<P>( self, provider: &P ) -> Result<Plan, Descriptor<DefiniteDescriptorKey>>
where P: AssetProvider<DefiniteDescriptorKey>,

Returns a plan if the provided assets are sufficient to produce a malleable satisfaction

If the assets aren’t sufficient for generating a Plan, the descriptor is returned

§

impl Descriptor<DescriptorPublicKey>

pub fn is_deriveable(&self) -> bool

👎Deprecated: use has_wildcards instead

Whether or not the descriptor has any wildcards

pub fn has_wildcard(&self) -> bool

Whether or not the descriptor has any wildcards i.e. /*.

pub fn at_derivation_index( &self, index: u32 ) -> Result<Descriptor<DefiniteDescriptorKey>, ConversionError>

Replaces all wildcards (i.e. /*) in the descriptor with a particular derivation index, turning it into a definite descriptor.

§Errors
  • If index ≥ 2^31

pub fn derive( &self, index: u32 ) -> Result<Descriptor<DefiniteDescriptorKey>, ConversionError>

👎Deprecated: use at_derivation_index instead

Deprecated name for Self::at_derivation_index.

pub fn derived_descriptor<C>( &self, secp: &Secp256k1<C>, index: u32 ) -> Result<Descriptor<PublicKey>, ConversionError>
where C: Verification,

Convert all the public keys in the descriptor to [bitcoin::PublicKey] by deriving them or otherwise converting them. All [bitcoin::secp256k1::XOnlyPublicKey]s are converted to by adding a default(0x02) y-coordinate.

This is a shorthand for:

    .expect("Valid ranged descriptor");
let derived_descriptor = descriptor.at_derivation_index(index).unwrap().derived_descriptor(&secp).unwrap();

and is only here really here for backwards compatbility. See at_derivation_index and [derived_descriptor] for more documentation.

§Errors

This function will return an error if hardened derivation is attempted.

pub fn parse_descriptor<C>( secp: &Secp256k1<C>, s: &str ) -> Result<(Descriptor<DescriptorPublicKey>, BTreeMap<DescriptorPublicKey, DescriptorSecretKey>), Error>
where C: Signing,

Parse a descriptor that may contain secret keys

Internally turns every secret key found into the corresponding public key and then returns a a descriptor that only contains public keys and a map to lookup the secret key given a public key.

pub fn to_string_with_secret( &self, key_map: &BTreeMap<DescriptorPublicKey, DescriptorSecretKey> ) -> String

Serialize a descriptor to string with its secret keys

pub fn find_derivation_index_for_spk<C>( &self, secp: &Secp256k1<C>, script_pubkey: &Script, range: Range<u32> ) -> Result<Option<(u32, Descriptor<PublicKey>)>, ConversionError>
where C: Verification,

Utility method for deriving the descriptor at each index in a range to find one matching script_pubkey.

If it finds a match then it returns the index it was derived at and the concrete descriptor at that index. If the descriptor is non-derivable then it will simply check the script pubkey against the descriptor and return it if it matches (in this case the index returned will be meaningless).

pub fn is_multipath(&self) -> bool

Whether this descriptor contains a key that has multiple derivation paths.

pub fn into_single_descriptors( self ) -> Result<Vec<Descriptor<DescriptorPublicKey>>, Error>

Get as many descriptors as different paths in this descriptor.

For multipath descriptors it will return as many descriptors as there is “parallel” paths. For regular descriptors it will just return itself.

§

impl Descriptor<DefiniteDescriptorKey>

pub fn derived_descriptor<C>( &self, secp: &Secp256k1<C> ) -> Result<Descriptor<PublicKey>, ConversionError>
where C: Verification,

Convert all the public keys in the descriptor to [bitcoin::PublicKey] by deriving them or otherwise converting them. All [bitcoin::secp256k1::XOnlyPublicKey]s are converted to by adding a default(0x02) y-coordinate.

§Examples
use miniscript::descriptor::{Descriptor, DescriptorPublicKey};
use miniscript::bitcoin::secp256k1;
use std::str::FromStr;

// test from bip 86
let secp = secp256k1::Secp256k1::verification_only();
let descriptor = Descriptor::<DescriptorPublicKey>::from_str("tr(xpub6BgBgsespWvERF3LHQu6CnqdvfEvtMcQjYrcRzx53QJjSxarj2afYWcLteoGVky7D3UKDP9QyrLprQ3VCECoY49yfdDEHGCtMMj92pReUsQ/0/*)")
    .expect("Valid ranged descriptor");
let result = descriptor.at_derivation_index(0).unwrap().derived_descriptor(&secp).expect("Non-hardened derivation");
assert_eq!(result.to_string(), "tr(03cc8a4bc64d897bddc5fbc2f670f7a8ba0b386779106cf1223c6fc5d7cd6fc115)#6qm9h8ym");
§Errors

This function will return an error if hardened derivation is attempted.

Trait Implementations§

§

impl<Pk> Clone for Descriptor<Pk>
where Pk: Clone + MiniscriptKey,

§

fn clone(&self) -> Descriptor<Pk>

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
§

impl<Pk> Debug for Descriptor<Pk>
where Pk: MiniscriptKey,

§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
source§

impl DescriptorExt for Descriptor<DescriptorPublicKey>

source§

fn dust_value(&self) -> u64

Returns the minimum value (in satoshis) at which an output is broadcastable. Panics if the descriptor wildcard is hardened.
source§

fn descriptor_id(&self) -> DescriptorId

Returns the descriptor id, calculated as the sha256 of the descriptor, checksum not included.
§

impl<'de, Pk> Deserialize<'de> for Descriptor<Pk>
where Pk: FromStrKey,

§

fn deserialize<D>( deserializer: D ) -> Result<Descriptor<Pk>, <D as Deserializer<'de>>::Error>
where D: Deserializer<'de>,

Deserialize this value from the given Serde deserializer. Read more
§

impl<Pk> Display for Descriptor<Pk>
where Pk: MiniscriptKey,

§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
source§

impl ExtractPolicy for Descriptor<DescriptorPublicKey>

source§

fn extract_policy( &self, signers: &SignersContainer, build_sat: BuildSatisfaction<'_>, secp: &Secp256k1<All> ) -> Result<Option<Policy>, Error>

Extract the spending policy
§

impl<Pk> ForEachKey<Pk> for Descriptor<Pk>
where Pk: MiniscriptKey,

§

fn for_each_key<'a, F>(&'a self, pred: F) -> bool
where F: FnMut(&'a Pk) -> bool,

Run a predicate on every key in the descriptor, returning whether the predicate returned true for every key
§

fn for_any_key<'a, F>(&'a self, pred: F) -> bool
where F: FnMut(&'a Pk) -> bool, Pk: 'a,

Run a predicate on every key in the descriptor, returning whether the predicate returned true for any key
§

impl<Pk> From<Bare<Pk>> for Descriptor<Pk>
where Pk: MiniscriptKey,

§

fn from(inner: Bare<Pk>) -> Descriptor<Pk>

Converts to this type from the input type.
§

impl<Pk> From<Pkh<Pk>> for Descriptor<Pk>
where Pk: MiniscriptKey,

§

fn from(inner: Pkh<Pk>) -> Descriptor<Pk>

Converts to this type from the input type.
§

impl<Pk> From<Sh<Pk>> for Descriptor<Pk>
where Pk: MiniscriptKey,

§

fn from(inner: Sh<Pk>) -> Descriptor<Pk>

Converts to this type from the input type.
§

impl<Pk> From<Tr<Pk>> for Descriptor<Pk>
where Pk: MiniscriptKey,

§

fn from(inner: Tr<Pk>) -> Descriptor<Pk>

Converts to this type from the input type.
§

impl<Pk> From<Wpkh<Pk>> for Descriptor<Pk>
where Pk: MiniscriptKey,

§

fn from(inner: Wpkh<Pk>) -> Descriptor<Pk>

Converts to this type from the input type.
§

impl<Pk> From<Wsh<Pk>> for Descriptor<Pk>
where Pk: MiniscriptKey,

§

fn from(inner: Wsh<Pk>) -> Descriptor<Pk>

Converts to this type from the input type.
§

impl<Pk> FromStr for Descriptor<Pk>
where Pk: FromStrKey,

§

type Err = Error

The associated error which can be returned from parsing.
§

fn from_str(s: &str) -> Result<Descriptor<Pk>, Error>

Parses a string s to return a value of this type. Read more
§

impl<Pk> FromTree for Descriptor<Pk>
where Pk: FromStrKey,

§

fn from_tree(top: &Tree<'_>) -> Result<Descriptor<Pk>, Error>

Parse an expression tree into a descriptor.

§

impl<Pk> Hash for Descriptor<Pk>
where Pk: Hash + MiniscriptKey,

§

fn hash<__H>(&self, state: &mut __H)
where __H: Hasher,

Feeds this value into the given Hasher. Read more
1.3.0 · source§

fn hash_slice<H>(data: &[Self], state: &mut H)
where H: Hasher, Self: Sized,

Feeds a slice of this type into the given Hasher. Read more
§

impl<Pk> Liftable<Pk> for Descriptor<Pk>
where Pk: MiniscriptKey,

§

fn lift(&self) -> Result<Policy<Pk>, Error>

Converts this object into an abstract policy.
§

impl<Pk> Ord for Descriptor<Pk>
where Pk: Ord + MiniscriptKey,

§

fn cmp(&self, other: &Descriptor<Pk>) -> Ordering

This method returns an Ordering between self and other. Read more
1.21.0 · source§

fn max(self, other: Self) -> Self
where Self: Sized,

Compares and returns the maximum of two values. Read more
1.21.0 · source§

fn min(self, other: Self) -> Self
where Self: Sized,

Compares and returns the minimum of two values. Read more
1.50.0 · source§

fn clamp(self, min: Self, max: Self) -> Self
where Self: Sized + PartialOrd,

Restrict a value to a certain interval. Read more
§

impl<Pk> PartialEq for Descriptor<Pk>
where Pk: PartialEq + MiniscriptKey,

§

fn eq(&self, other: &Descriptor<Pk>) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
§

impl<Pk> PartialOrd for Descriptor<Pk>
where Pk: PartialOrd + MiniscriptKey,

§

fn partial_cmp(&self, other: &Descriptor<Pk>) -> Option<Ordering>

This method returns an ordering between self and other values if one exists. Read more
1.0.0 · source§

fn lt(&self, other: &Rhs) -> bool

This method tests less than (for self and other) and is used by the < operator. Read more
1.0.0 · source§

fn le(&self, other: &Rhs) -> bool

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more
1.0.0 · source§

fn gt(&self, other: &Rhs) -> bool

This method tests greater than (for self and other) and is used by the > operator. Read more
1.0.0 · source§

fn ge(&self, other: &Rhs) -> bool

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
§

impl<'de, Pk> Serialize for Descriptor<Pk>
where Pk: MiniscriptKey,

§

fn serialize<S>( &self, serializer: S ) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>
where S: Serializer,

Serialize this value into the given Serde serializer. Read more
§

impl<P, Q> TranslatePk<P, Q> for Descriptor<P>
where P: MiniscriptKey, Q: MiniscriptKey,

§

fn translate_pk<T, E>( &self, t: &mut T ) -> Result<<Descriptor<P> as TranslatePk<P, Q>>::Output, TranslateErr<E>>
where T: Translator<P, Q, E>,

Converts a descriptor using abstract keys to one using specific keys.

§

type Output = Descriptor<Q>

The associated output type. This must be Self<Q>.
§

impl<Pk> Eq for Descriptor<Pk>
where Pk: Eq + MiniscriptKey,

§

impl<Pk> StructuralPartialEq for Descriptor<Pk>
where Pk: MiniscriptKey,

Auto Trait Implementations§

§

impl<Pk> !Freeze for Descriptor<Pk>

§

impl<Pk> RefUnwindSafe for Descriptor<Pk>
where Pk: RefUnwindSafe, <Pk as MiniscriptKey>::Sha256: RefUnwindSafe, <Pk as MiniscriptKey>::Hash256: RefUnwindSafe, <Pk as MiniscriptKey>::Ripemd160: RefUnwindSafe, <Pk as MiniscriptKey>::Hash160: RefUnwindSafe,

§

impl<Pk> Send for Descriptor<Pk>
where Pk: Send + Sync, <Pk as MiniscriptKey>::Sha256: Send + Sync, <Pk as MiniscriptKey>::Hash256: Send + Sync, <Pk as MiniscriptKey>::Ripemd160: Send + Sync, <Pk as MiniscriptKey>::Hash160: Send + Sync,

§

impl<Pk> Sync for Descriptor<Pk>
where Pk: Sync + Send, <Pk as MiniscriptKey>::Sha256: Sync + Send, <Pk as MiniscriptKey>::Hash256: Sync + Send, <Pk as MiniscriptKey>::Ripemd160: Sync + Send, <Pk as MiniscriptKey>::Hash160: Sync + Send,

§

impl<Pk> Unpin for Descriptor<Pk>
where Pk: Unpin, <Pk as MiniscriptKey>::Sha256: Unpin, <Pk as MiniscriptKey>::Hash256: Unpin, <Pk as MiniscriptKey>::Ripemd160: Unpin, <Pk as MiniscriptKey>::Hash160: Unpin,

§

impl<Pk> UnwindSafe for Descriptor<Pk>
where Pk: UnwindSafe + RefUnwindSafe, <Pk as MiniscriptKey>::Sha256: UnwindSafe + RefUnwindSafe, <Pk as MiniscriptKey>::Hash256: UnwindSafe + RefUnwindSafe, <Pk as MiniscriptKey>::Ripemd160: UnwindSafe + RefUnwindSafe, <Pk as MiniscriptKey>::Hash160: UnwindSafe + RefUnwindSafe,

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> ToOwned for T
where T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T> ToString for T
where T: Display + ?Sized,

source§

default fn to_string(&self) -> String

Converts the given value to a String. Read more
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

§

fn vzip(self) -> V

source§

impl<T> DeserializeOwned for T
where T: for<'de> Deserialize<'de>,