1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
//! Contains the [`IndexedTxGraph`] and associated types. Refer to the
//! [`IndexedTxGraph`] documentation for more.
use alloc::vec::Vec;
use bitcoin::{Block, OutPoint, Transaction, TxOut, Txid};

use crate::{
    tx_graph::{self, TxGraph},
    Anchor, AnchorFromBlockPosition, Append, BlockId,
};

/// The [`IndexedTxGraph`] combines a [`TxGraph`] and an [`Indexer`] implementation.
///
/// It ensures that [`TxGraph`] and [`Indexer`] are updated atomically.
#[derive(Debug)]
pub struct IndexedTxGraph<A, I> {
    /// Transaction index.
    pub index: I,
    graph: TxGraph<A>,
}

impl<A, I: Default> Default for IndexedTxGraph<A, I> {
    fn default() -> Self {
        Self {
            graph: Default::default(),
            index: Default::default(),
        }
    }
}

impl<A, I> IndexedTxGraph<A, I> {
    /// Construct a new [`IndexedTxGraph`] with a given `index`.
    pub fn new(index: I) -> Self {
        Self {
            index,
            graph: TxGraph::default(),
        }
    }

    /// Get a reference of the internal transaction graph.
    pub fn graph(&self) -> &TxGraph<A> {
        &self.graph
    }
}

impl<A: Anchor, I: Indexer> IndexedTxGraph<A, I> {
    /// Applies the [`ChangeSet`] to the [`IndexedTxGraph`].
    pub fn apply_changeset(&mut self, changeset: ChangeSet<A, I::ChangeSet>) {
        self.index.apply_changeset(changeset.indexer);

        for tx in &changeset.graph.txs {
            self.index.index_tx(tx);
        }
        for (&outpoint, txout) in &changeset.graph.txouts {
            self.index.index_txout(outpoint, txout);
        }

        self.graph.apply_changeset(changeset.graph);
    }

    /// Determines the [`ChangeSet`] between `self` and an empty [`IndexedTxGraph`].
    pub fn initial_changeset(&self) -> ChangeSet<A, I::ChangeSet> {
        let graph = self.graph.initial_changeset();
        let indexer = self.index.initial_changeset();
        ChangeSet { graph, indexer }
    }
}

impl<A: Anchor, I: Indexer> IndexedTxGraph<A, I>
where
    I::ChangeSet: Default + Append,
{
    fn index_tx_graph_changeset(
        &mut self,
        tx_graph_changeset: &tx_graph::ChangeSet<A>,
    ) -> I::ChangeSet {
        let mut changeset = I::ChangeSet::default();
        for added_tx in &tx_graph_changeset.txs {
            changeset.append(self.index.index_tx(added_tx));
        }
        for (&added_outpoint, added_txout) in &tx_graph_changeset.txouts {
            changeset.append(self.index.index_txout(added_outpoint, added_txout));
        }
        changeset
    }

    /// Apply an `update` directly.
    ///
    /// `update` is a [`TxGraph<A>`] and the resultant changes is returned as [`ChangeSet`].
    pub fn apply_update(&mut self, update: TxGraph<A>) -> ChangeSet<A, I::ChangeSet> {
        let graph = self.graph.apply_update(update);
        let indexer = self.index_tx_graph_changeset(&graph);
        ChangeSet { graph, indexer }
    }

    /// Insert a floating `txout` of given `outpoint`.
    pub fn insert_txout(&mut self, outpoint: OutPoint, txout: TxOut) -> ChangeSet<A, I::ChangeSet> {
        let graph = self.graph.insert_txout(outpoint, txout);
        let indexer = self.index_tx_graph_changeset(&graph);
        ChangeSet { graph, indexer }
    }

    /// Insert and index a transaction into the graph.
    pub fn insert_tx(&mut self, tx: Transaction) -> ChangeSet<A, I::ChangeSet> {
        let graph = self.graph.insert_tx(tx);
        let indexer = self.index_tx_graph_changeset(&graph);
        ChangeSet { graph, indexer }
    }

    /// Insert an `anchor` for a given transaction.
    pub fn insert_anchor(&mut self, txid: Txid, anchor: A) -> ChangeSet<A, I::ChangeSet> {
        self.graph.insert_anchor(txid, anchor).into()
    }

    /// Insert a unix timestamp of when a transaction is seen in the mempool.
    ///
    /// This is used for transaction conflict resolution in [`TxGraph`] where the transaction with
    /// the later last-seen is prioritized.
    pub fn insert_seen_at(&mut self, txid: Txid, seen_at: u64) -> ChangeSet<A, I::ChangeSet> {
        self.graph.insert_seen_at(txid, seen_at).into()
    }

    /// Batch insert transactions, filtering out those that are irrelevant.
    ///
    /// Relevancy is determined by the [`Indexer::is_tx_relevant`] implementation of `I`. Irrelevant
    /// transactions in `txs` will be ignored. `txs` do not need to be in topological order.
    pub fn batch_insert_relevant<'t>(
        &mut self,
        txs: impl IntoIterator<Item = (&'t Transaction, impl IntoIterator<Item = A>)>,
    ) -> ChangeSet<A, I::ChangeSet> {
        // The algorithm below allows for non-topologically ordered transactions by using two loops.
        // This is achieved by:
        // 1. insert all txs into the index. If they are irrelevant then that's fine it will just
        //    not store anything about them.
        // 2. decide whether to insert them into the graph depending on whether `is_tx_relevant`
        //    returns true or not. (in a second loop).
        let txs = txs.into_iter().collect::<Vec<_>>();

        let mut indexer = I::ChangeSet::default();
        for (tx, _) in &txs {
            indexer.append(self.index.index_tx(tx));
        }

        let mut graph = tx_graph::ChangeSet::default();
        for (tx, anchors) in txs {
            if self.index.is_tx_relevant(tx) {
                let txid = tx.txid();
                graph.append(self.graph.insert_tx(tx.clone()));
                for anchor in anchors {
                    graph.append(self.graph.insert_anchor(txid, anchor));
                }
            }
        }

        ChangeSet { graph, indexer }
    }

    /// Batch insert unconfirmed transactions, filtering out those that are irrelevant.
    ///
    /// Relevancy is determined by the internal [`Indexer::is_tx_relevant`] implementation of `I`.
    /// Irrelevant transactions in `txs` will be ignored.
    ///
    /// Items of `txs` are tuples containing the transaction and a *last seen* timestamp. The
    /// *last seen* communicates when the transaction is last seen in the mempool which is used for
    /// conflict-resolution in [`TxGraph`] (refer to [`TxGraph::insert_seen_at`] for details).
    pub fn batch_insert_relevant_unconfirmed<'t>(
        &mut self,
        unconfirmed_txs: impl IntoIterator<Item = (&'t Transaction, u64)>,
    ) -> ChangeSet<A, I::ChangeSet> {
        // The algorithm below allows for non-topologically ordered transactions by using two loops.
        // This is achieved by:
        // 1. insert all txs into the index. If they are irrelevant then that's fine it will just
        //    not store anything about them.
        // 2. decide whether to insert them into the graph depending on whether `is_tx_relevant`
        //    returns true or not. (in a second loop).
        let txs = unconfirmed_txs.into_iter().collect::<Vec<_>>();

        let mut indexer = I::ChangeSet::default();
        for (tx, _) in &txs {
            indexer.append(self.index.index_tx(tx));
        }

        let graph = self.graph.batch_insert_unconfirmed(
            txs.into_iter()
                .filter(|(tx, _)| self.index.is_tx_relevant(tx))
                .map(|(tx, seen_at)| (tx.clone(), seen_at)),
        );

        ChangeSet { graph, indexer }
    }

    /// Batch insert unconfirmed transactions.
    ///
    /// Items of `txs` are tuples containing the transaction and a *last seen* timestamp. The
    /// *last seen* communicates when the transaction is last seen in the mempool which is used for
    /// conflict-resolution in [`TxGraph`] (refer to [`TxGraph::insert_seen_at`] for details).
    ///
    /// To filter out irrelevant transactions, use [`batch_insert_relevant_unconfirmed`] instead.
    ///
    /// [`batch_insert_relevant_unconfirmed`]: IndexedTxGraph::batch_insert_relevant_unconfirmed
    pub fn batch_insert_unconfirmed(
        &mut self,
        txs: impl IntoIterator<Item = (Transaction, u64)>,
    ) -> ChangeSet<A, I::ChangeSet> {
        let graph = self.graph.batch_insert_unconfirmed(txs);
        let indexer = self.index_tx_graph_changeset(&graph);
        ChangeSet { graph, indexer }
    }
}

/// Methods are available if the anchor (`A`) implements [`AnchorFromBlockPosition`].
impl<A: Anchor, I: Indexer> IndexedTxGraph<A, I>
where
    I::ChangeSet: Default + Append,
    A: AnchorFromBlockPosition,
{
    /// Batch insert all transactions of the given `block` of `height`, filtering out those that are
    /// irrelevant.
    ///
    /// Each inserted transaction's anchor will be constructed from
    /// [`AnchorFromBlockPosition::from_block_position`].
    ///
    /// Relevancy is determined by the internal [`Indexer::is_tx_relevant`] implementation of `I`.
    /// Irrelevant transactions in `txs` will be ignored.
    pub fn apply_block_relevant(
        &mut self,
        block: &Block,
        height: u32,
    ) -> ChangeSet<A, I::ChangeSet> {
        let block_id = BlockId {
            hash: block.block_hash(),
            height,
        };
        let mut changeset = ChangeSet::<A, I::ChangeSet>::default();
        for (tx_pos, tx) in block.txdata.iter().enumerate() {
            changeset.indexer.append(self.index.index_tx(tx));
            if self.index.is_tx_relevant(tx) {
                let txid = tx.txid();
                let anchor = A::from_block_position(block, block_id, tx_pos);
                changeset.graph.append(self.graph.insert_tx(tx.clone()));
                changeset
                    .graph
                    .append(self.graph.insert_anchor(txid, anchor));
            }
        }
        changeset
    }

    /// Batch insert all transactions of the given `block` of `height`.
    ///
    /// Each inserted transaction's anchor will be constructed from
    /// [`AnchorFromBlockPosition::from_block_position`].
    ///
    /// To only insert relevant transactions, use [`apply_block_relevant`] instead.
    ///
    /// [`apply_block_relevant`]: IndexedTxGraph::apply_block_relevant
    pub fn apply_block(&mut self, block: Block, height: u32) -> ChangeSet<A, I::ChangeSet> {
        let block_id = BlockId {
            hash: block.block_hash(),
            height,
        };
        let mut graph = tx_graph::ChangeSet::default();
        for (tx_pos, tx) in block.txdata.iter().enumerate() {
            let anchor = A::from_block_position(&block, block_id, tx_pos);
            graph.append(self.graph.insert_anchor(tx.txid(), anchor));
            graph.append(self.graph.insert_tx(tx.clone()));
        }
        let indexer = self.index_tx_graph_changeset(&graph);
        ChangeSet { graph, indexer }
    }
}

/// Represents changes to an [`IndexedTxGraph`].
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(
    feature = "serde",
    derive(serde::Deserialize, serde::Serialize),
    serde(
        crate = "serde_crate",
        bound(
            deserialize = "A: Ord + serde::Deserialize<'de>, IA: serde::Deserialize<'de>",
            serialize = "A: Ord + serde::Serialize, IA: serde::Serialize"
        )
    )
)]
#[must_use]
pub struct ChangeSet<A, IA> {
    /// [`TxGraph`] changeset.
    pub graph: tx_graph::ChangeSet<A>,
    /// [`Indexer`] changeset.
    pub indexer: IA,
}

impl<A, IA: Default> Default for ChangeSet<A, IA> {
    fn default() -> Self {
        Self {
            graph: Default::default(),
            indexer: Default::default(),
        }
    }
}

impl<A: Anchor, IA: Append> Append for ChangeSet<A, IA> {
    fn append(&mut self, other: Self) {
        self.graph.append(other.graph);
        self.indexer.append(other.indexer);
    }

    fn is_empty(&self) -> bool {
        self.graph.is_empty() && self.indexer.is_empty()
    }
}

impl<A, IA: Default> From<tx_graph::ChangeSet<A>> for ChangeSet<A, IA> {
    fn from(graph: tx_graph::ChangeSet<A>) -> Self {
        Self {
            graph,
            ..Default::default()
        }
    }
}

#[cfg(feature = "miniscript")]
impl<A, K> From<crate::keychain::ChangeSet<K>> for ChangeSet<A, crate::keychain::ChangeSet<K>> {
    fn from(indexer: crate::keychain::ChangeSet<K>) -> Self {
        Self {
            graph: Default::default(),
            indexer,
        }
    }
}

/// Utilities for indexing transaction data.
///
/// Types which implement this trait can be used to construct an [`IndexedTxGraph`].
/// This trait's methods should rarely be called directly.
pub trait Indexer {
    /// The resultant "changeset" when new transaction data is indexed.
    type ChangeSet;

    /// Scan and index the given `outpoint` and `txout`.
    fn index_txout(&mut self, outpoint: OutPoint, txout: &TxOut) -> Self::ChangeSet;

    /// Scans a transaction for relevant outpoints, which are stored and indexed internally.
    fn index_tx(&mut self, tx: &Transaction) -> Self::ChangeSet;

    /// Apply changeset to itself.
    fn apply_changeset(&mut self, changeset: Self::ChangeSet);

    /// Determines the [`ChangeSet`] between `self` and an empty [`Indexer`].
    fn initial_changeset(&self) -> Self::ChangeSet;

    /// Determines whether the transaction should be included in the index.
    fn is_tx_relevant(&self, tx: &Transaction) -> bool;
}