1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
//! [`KeychainTxOutIndex`] controls how script pubkeys are revealed for multiple keychains and
//! indexes [`TxOut`]s with them.

use crate::{
    collections::*,
    miniscript::{Descriptor, DescriptorPublicKey},
    spk_client::{FullScanRequestBuilder, SyncRequestBuilder},
    spk_iter::BIP32_MAX_INDEX,
    spk_txout::SpkTxOutIndex,
    DescriptorExt, DescriptorId, Indexed, Indexer, KeychainIndexed, SpkIterator,
};
use alloc::{borrow::ToOwned, vec::Vec};
use bitcoin::{Amount, OutPoint, ScriptBuf, SignedAmount, Transaction, TxOut, Txid};
use core::{
    fmt::Debug,
    ops::{Bound, RangeBounds},
};

use crate::Merge;

/// The default lookahead for a [`KeychainTxOutIndex`]
pub const DEFAULT_LOOKAHEAD: u32 = 25;

/// [`KeychainTxOutIndex`] controls how script pubkeys are revealed for multiple keychains, and
/// indexes [`TxOut`]s with them.
///
/// A single keychain is a chain of script pubkeys derived from a single [`Descriptor`]. Keychains
/// are identified using the `K` generic. Script pubkeys are identified by the keychain that they
/// are derived from `K`, as well as the derivation index `u32`.
///
/// There is a strict 1-to-1 relationship between descriptors and keychains. Each keychain has one
/// and only one descriptor and each descriptor has one and only one keychain. The
/// [`insert_descriptor`] method will return an error if you try and violate this invariant. This
/// rule is a proxy for a stronger rule: no two descriptors should produce the same script pubkey.
/// Having two descriptors produce the same script pubkey should cause whichever keychain derives
/// the script pubkey first to be the effective owner of it but you should not rely on this
/// behaviour. ⚠ It is up you, the developer, not to violate this invariant.
///
/// # Revealed script pubkeys
///
/// Tracking how script pubkeys are revealed is useful for collecting chain data. For example, if
/// the user has requested 5 script pubkeys (to receive money with), we only need to use those
/// script pubkeys to scan for chain data.
///
/// Call [`reveal_to_target`] or [`reveal_next_spk`] to reveal more script pubkeys.
/// Call [`revealed_keychain_spks`] or [`revealed_spks`] to iterate through revealed script pubkeys.
///
/// # Lookahead script pubkeys
///
/// When an user first recovers a wallet (i.e. from a recovery phrase and/or descriptor), we will
/// NOT have knowledge of which script pubkeys are revealed. So when we index a transaction or
/// txout (using [`index_tx`]/[`index_txout`]) we scan the txouts against script pubkeys derived
/// above the last revealed index. These additionally-derived script pubkeys are called the
/// lookahead.
///
/// The [`KeychainTxOutIndex`] is constructed with the `lookahead` and cannot be altered. See
/// [`DEFAULT_LOOKAHEAD`] for the value used in the `Default` implementation. Use [`new`] to set a
/// custom `lookahead`.
///
/// # Unbounded script pubkey iterator
///
/// For script-pubkey-based chain sources (such as Electrum/Esplora), an initial scan is best done
/// by iterating though derived script pubkeys one by one and requesting transaction histories for
/// each script pubkey. We will stop after x-number of script pubkeys have empty histories. An
/// unbounded script pubkey iterator is useful to pass to such a chain source because it doesn't
/// require holding a reference to the index.
///
/// Call [`unbounded_spk_iter`] to get an unbounded script pubkey iterator for a given keychain.
/// Call [`all_unbounded_spk_iters`] to get unbounded script pubkey iterators for all keychains.
///
/// # Change sets
///
/// Methods that can update the last revealed index or add keychains will return [`ChangeSet`] to report
/// these changes. This should be persisted for future recovery.
///
/// ## Synopsis
///
/// ```
/// use bdk_chain::indexer::keychain_txout::KeychainTxOutIndex;
/// # use bdk_chain::{ miniscript::{Descriptor, DescriptorPublicKey} };
/// # use core::str::FromStr;
///
/// // imagine our service has internal and external addresses but also addresses for users
/// #[derive(Clone, Debug, PartialEq, Eq, Ord, PartialOrd)]
/// enum MyKeychain {
///     External,
///     Internal,
///     MyAppUser {
///         user_id: u32
///     }
/// }
///
/// let mut txout_index = KeychainTxOutIndex::<MyKeychain>::default();
///
/// # let secp = bdk_chain::bitcoin::secp256k1::Secp256k1::signing_only();
/// # let (external_descriptor,_) = Descriptor::<DescriptorPublicKey>::parse_descriptor(&secp, "tr([73c5da0a/86'/0'/0']xprv9xgqHN7yz9MwCkxsBPN5qetuNdQSUttZNKw1dcYTV4mkaAFiBVGQziHs3NRSWMkCzvgjEe3n9xV8oYywvM8at9yRqyaZVz6TYYhX98VjsUk/0/*)").unwrap();
/// # let (internal_descriptor,_) = Descriptor::<DescriptorPublicKey>::parse_descriptor(&secp, "tr([73c5da0a/86'/0'/0']xprv9xgqHN7yz9MwCkxsBPN5qetuNdQSUttZNKw1dcYTV4mkaAFiBVGQziHs3NRSWMkCzvgjEe3n9xV8oYywvM8at9yRqyaZVz6TYYhX98VjsUk/1/*)").unwrap();
/// # let (descriptor_42, _) = Descriptor::<DescriptorPublicKey>::parse_descriptor(&secp, "tr([73c5da0a/86'/0'/0']xprv9xgqHN7yz9MwCkxsBPN5qetuNdQSUttZNKw1dcYTV4mkaAFiBVGQziHs3NRSWMkCzvgjEe3n9xV8oYywvM8at9yRqyaZVz6TYYhX98VjsUk/2/*)").unwrap();
/// let _ = txout_index.insert_descriptor(MyKeychain::External, external_descriptor)?;
/// let _ = txout_index.insert_descriptor(MyKeychain::Internal, internal_descriptor)?;
/// let _ = txout_index.insert_descriptor(MyKeychain::MyAppUser { user_id: 42 }, descriptor_42)?;
///
/// let new_spk_for_user = txout_index.reveal_next_spk(MyKeychain::MyAppUser{ user_id: 42 });
/// # Ok::<_, bdk_chain::indexer::keychain_txout::InsertDescriptorError<_>>(())
/// ```
///
/// [`Ord`]: core::cmp::Ord
/// [`SpkTxOutIndex`]: crate::spk_txout_index::SpkTxOutIndex
/// [`Descriptor`]: crate::miniscript::Descriptor
/// [`reveal_to_target`]: Self::reveal_to_target
/// [`reveal_next_spk`]: Self::reveal_next_spk
/// [`revealed_keychain_spks`]: Self::revealed_keychain_spks
/// [`revealed_spks`]: Self::revealed_spks
/// [`index_tx`]: Self::index_tx
/// [`index_txout`]: Self::index_txout
/// [`new`]: Self::new
/// [`unbounded_spk_iter`]: Self::unbounded_spk_iter
/// [`all_unbounded_spk_iters`]: Self::all_unbounded_spk_iters
/// [`outpoints`]: Self::outpoints
/// [`txouts`]: Self::txouts
/// [`unused_spks`]: Self::unused_spks
/// [`insert_descriptor`]: Self::insert_descriptor
#[derive(Clone, Debug)]
pub struct KeychainTxOutIndex<K> {
    inner: SpkTxOutIndex<(K, u32)>,
    keychain_to_descriptor_id: BTreeMap<K, DescriptorId>,
    descriptor_id_to_keychain: HashMap<DescriptorId, K>,
    descriptors: HashMap<DescriptorId, Descriptor<DescriptorPublicKey>>,
    last_revealed: HashMap<DescriptorId, u32>,
    lookahead: u32,
}

impl<K> Default for KeychainTxOutIndex<K> {
    fn default() -> Self {
        Self::new(DEFAULT_LOOKAHEAD)
    }
}

impl<K: Clone + Ord + Debug> Indexer for KeychainTxOutIndex<K> {
    type ChangeSet = ChangeSet;

    fn index_txout(&mut self, outpoint: OutPoint, txout: &TxOut) -> Self::ChangeSet {
        let mut changeset = ChangeSet::default();
        if let Some((keychain, index)) = self.inner.scan_txout(outpoint, txout).cloned() {
            let did = self
                .keychain_to_descriptor_id
                .get(&keychain)
                .expect("invariant");
            if self.last_revealed.get(did) < Some(&index) {
                self.last_revealed.insert(*did, index);
                changeset.last_revealed.insert(*did, index);
                self.replenish_inner_index(*did, &keychain, self.lookahead);
            }
        }
        changeset
    }

    fn index_tx(&mut self, tx: &bitcoin::Transaction) -> Self::ChangeSet {
        let mut changeset = ChangeSet::default();
        let txid = tx.compute_txid();
        for (op, txout) in tx.output.iter().enumerate() {
            changeset.merge(self.index_txout(OutPoint::new(txid, op as u32), txout));
        }
        changeset
    }

    fn initial_changeset(&self) -> Self::ChangeSet {
        ChangeSet {
            last_revealed: self.last_revealed.clone().into_iter().collect(),
        }
    }

    fn apply_changeset(&mut self, changeset: Self::ChangeSet) {
        self.apply_changeset(changeset)
    }

    fn is_tx_relevant(&self, tx: &bitcoin::Transaction) -> bool {
        self.inner.is_relevant(tx)
    }
}

impl<K> KeychainTxOutIndex<K> {
    /// Construct a [`KeychainTxOutIndex`] with the given `lookahead`.
    ///
    /// The `lookahead` is the number of script pubkeys to derive and cache from the internal
    /// descriptors over and above the last revealed script index. Without a lookahead the index
    /// will miss outputs you own when processing transactions whose output script pubkeys lie
    /// beyond the last revealed index. In certain situations, such as when performing an initial
    /// scan of the blockchain during wallet import, it may be uncertain or unknown what the index
    /// of the last revealed script pubkey actually is.
    ///
    /// Refer to [struct-level docs](KeychainTxOutIndex) for more about `lookahead`.
    pub fn new(lookahead: u32) -> Self {
        Self {
            inner: SpkTxOutIndex::default(),
            keychain_to_descriptor_id: Default::default(),
            descriptors: Default::default(),
            descriptor_id_to_keychain: Default::default(),
            last_revealed: Default::default(),
            lookahead,
        }
    }
}

/// Methods that are *re-exposed* from the internal [`SpkTxOutIndex`].
impl<K: Clone + Ord + Debug> KeychainTxOutIndex<K> {
    /// Return a reference to the internal [`SpkTxOutIndex`].
    ///
    /// **WARNING**: The internal index will contain lookahead spks. Refer to
    /// [struct-level docs](KeychainTxOutIndex) for more about `lookahead`.
    pub fn inner(&self) -> &SpkTxOutIndex<(K, u32)> {
        &self.inner
    }

    /// Get the set of indexed outpoints, corresponding to tracked keychains.
    pub fn outpoints(&self) -> &BTreeSet<KeychainIndexed<K, OutPoint>> {
        self.inner.outpoints()
    }

    /// Iterate over known txouts that spend to tracked script pubkeys.
    pub fn txouts(
        &self,
    ) -> impl DoubleEndedIterator<Item = KeychainIndexed<K, (OutPoint, &TxOut)>> + ExactSizeIterator
    {
        self.inner
            .txouts()
            .map(|(index, op, txout)| (index.clone(), (op, txout)))
    }

    /// Finds all txouts on a transaction that has previously been scanned and indexed.
    pub fn txouts_in_tx(
        &self,
        txid: Txid,
    ) -> impl DoubleEndedIterator<Item = KeychainIndexed<K, (OutPoint, &TxOut)>> {
        self.inner
            .txouts_in_tx(txid)
            .map(|(index, op, txout)| (index.clone(), (op, txout)))
    }

    /// Return the [`TxOut`] of `outpoint` if it has been indexed, and if it corresponds to a
    /// tracked keychain.
    ///
    /// The associated keychain and keychain index of the txout's spk is also returned.
    ///
    /// This calls [`SpkTxOutIndex::txout`] internally.
    pub fn txout(&self, outpoint: OutPoint) -> Option<KeychainIndexed<K, &TxOut>> {
        self.inner
            .txout(outpoint)
            .map(|(index, txout)| (index.clone(), txout))
    }

    /// Return the script that exists under the given `keychain`'s `index`.
    ///
    /// This calls [`SpkTxOutIndex::spk_at_index`] internally.
    pub fn spk_at_index(&self, keychain: K, index: u32) -> Option<ScriptBuf> {
        self.inner.spk_at_index(&(keychain.clone(), index))
    }

    /// Returns the keychain and keychain index associated with the spk.
    ///
    /// This calls [`SpkTxOutIndex::index_of_spk`] internally.
    pub fn index_of_spk(&self, script: ScriptBuf) -> Option<&(K, u32)> {
        self.inner.index_of_spk(script)
    }

    /// Returns whether the spk under the `keychain`'s `index` has been used.
    ///
    /// Here, "unused" means that after the script pubkey was stored in the index, the index has
    /// never scanned a transaction output with it.
    ///
    /// This calls [`SpkTxOutIndex::is_used`] internally.
    pub fn is_used(&self, keychain: K, index: u32) -> bool {
        self.inner.is_used(&(keychain, index))
    }

    /// Marks the script pubkey at `index` as used even though the tracker hasn't seen an output
    /// with it.
    ///
    /// This only has an effect when the `index` had been added to `self` already and was unused.
    ///
    /// Returns whether the spk under the given `keychain` and `index` is successfully
    /// marked as used. Returns false either when there is no descriptor under the given
    /// keychain, or when the spk is already marked as used.
    ///
    /// This is useful when you want to reserve a script pubkey for something but don't want to add
    /// the transaction output using it to the index yet. Other callers will consider `index` on
    /// `keychain` used until you call [`unmark_used`].
    ///
    /// This calls [`SpkTxOutIndex::mark_used`] internally.
    ///
    /// [`unmark_used`]: Self::unmark_used
    pub fn mark_used(&mut self, keychain: K, index: u32) -> bool {
        self.inner.mark_used(&(keychain, index))
    }

    /// Undoes the effect of [`mark_used`]. Returns whether the `index` is inserted back into
    /// `unused`.
    ///
    /// Note that if `self` has scanned an output with this script pubkey, then this will have no
    /// effect.
    ///
    /// This calls [`SpkTxOutIndex::unmark_used`] internally.
    ///
    /// [`mark_used`]: Self::mark_used
    pub fn unmark_used(&mut self, keychain: K, index: u32) -> bool {
        self.inner.unmark_used(&(keychain, index))
    }

    /// Computes the total value transfer effect `tx` has on the script pubkeys belonging to the
    /// keychains in `range`. Value is *sent* when a script pubkey in the `range` is on an input and
    /// *received* when it is on an output. For `sent` to be computed correctly, the output being
    /// spent must have already been scanned by the index. Calculating received just uses the
    /// [`Transaction`] outputs directly, so it will be correct even if it has not been scanned.
    pub fn sent_and_received(
        &self,
        tx: &Transaction,
        range: impl RangeBounds<K>,
    ) -> (Amount, Amount) {
        self.inner
            .sent_and_received(tx, self.map_to_inner_bounds(range))
    }

    /// Computes the net value that this transaction gives to the script pubkeys in the index and
    /// *takes* from the transaction outputs in the index. Shorthand for calling
    /// [`sent_and_received`] and subtracting sent from received.
    ///
    /// This calls [`SpkTxOutIndex::net_value`] internally.
    ///
    /// [`sent_and_received`]: Self::sent_and_received
    pub fn net_value(&self, tx: &Transaction, range: impl RangeBounds<K>) -> SignedAmount {
        self.inner.net_value(tx, self.map_to_inner_bounds(range))
    }
}

impl<K: Clone + Ord + Debug> KeychainTxOutIndex<K> {
    /// Return all keychains and their corresponding descriptors.
    pub fn keychains(
        &self,
    ) -> impl DoubleEndedIterator<Item = (K, &Descriptor<DescriptorPublicKey>)> + ExactSizeIterator + '_
    {
        self.keychain_to_descriptor_id
            .iter()
            .map(|(k, did)| (k.clone(), self.descriptors.get(did).expect("invariant")))
    }

    /// Insert a descriptor with a keychain associated to it.
    ///
    /// Adding a descriptor means you will be able to derive new script pubkeys under it and the
    /// txout index will discover transaction outputs with those script pubkeys (once they've been
    /// derived and added to the index).
    ///
    /// keychain <-> descriptor is a one-to-one mapping that cannot be changed. Attempting to do so
    /// will return a [`InsertDescriptorError<K>`].
    ///
    /// [`KeychainTxOutIndex`] will prevent you from inserting two descriptors which derive the same
    /// script pubkey at index 0, but it's up to you to ensure that descriptors don't collide at
    /// other indices. If they do nothing catastrophic happens at the `KeychainTxOutIndex` level
    /// (one keychain just becomes the defacto owner of that spk arbitrarily) but this may have
    /// subtle implications up the application stack like one UTXO being missing from one keychain
    /// because it has been assigned to another which produces the same script pubkey.
    pub fn insert_descriptor(
        &mut self,
        keychain: K,
        descriptor: Descriptor<DescriptorPublicKey>,
    ) -> Result<bool, InsertDescriptorError<K>> {
        let did = descriptor.descriptor_id();
        if !self.keychain_to_descriptor_id.contains_key(&keychain)
            && !self.descriptor_id_to_keychain.contains_key(&did)
        {
            self.descriptors.insert(did, descriptor.clone());
            self.keychain_to_descriptor_id.insert(keychain.clone(), did);
            self.descriptor_id_to_keychain.insert(did, keychain.clone());
            self.replenish_inner_index(did, &keychain, self.lookahead);
            return Ok(true);
        }

        if let Some(existing_desc_id) = self.keychain_to_descriptor_id.get(&keychain) {
            let descriptor = self.descriptors.get(existing_desc_id).expect("invariant");
            if *existing_desc_id != did {
                return Err(InsertDescriptorError::KeychainAlreadyAssigned {
                    existing_assignment: descriptor.clone(),
                    keychain,
                });
            }
        }

        if let Some(existing_keychain) = self.descriptor_id_to_keychain.get(&did) {
            let descriptor = self.descriptors.get(&did).expect("invariant").clone();

            if *existing_keychain != keychain {
                return Err(InsertDescriptorError::DescriptorAlreadyAssigned {
                    existing_assignment: existing_keychain.clone(),
                    descriptor,
                });
            }
        }

        Ok(false)
    }

    /// Gets the descriptor associated with the keychain. Returns `None` if the keychain doesn't
    /// have a descriptor associated with it.
    pub fn get_descriptor(&self, keychain: K) -> Option<&Descriptor<DescriptorPublicKey>> {
        let did = self.keychain_to_descriptor_id.get(&keychain)?;
        self.descriptors.get(did)
    }

    /// Get the lookahead setting.
    ///
    /// Refer to [`new`] for more information on the `lookahead`.
    ///
    /// [`new`]: Self::new
    pub fn lookahead(&self) -> u32 {
        self.lookahead
    }

    /// Store lookahead scripts until `target_index` (inclusive).
    ///
    /// This does not change the global `lookahead` setting.
    pub fn lookahead_to_target(&mut self, keychain: K, target_index: u32) {
        if let Some((next_index, _)) = self.next_index(keychain.clone()) {
            let temp_lookahead = (target_index + 1)
                .checked_sub(next_index)
                .filter(|&index| index > 0);

            if let Some(temp_lookahead) = temp_lookahead {
                self.replenish_inner_index_keychain(keychain, temp_lookahead);
            }
        }
    }

    fn replenish_inner_index_did(&mut self, did: DescriptorId, lookahead: u32) {
        if let Some(keychain) = self.descriptor_id_to_keychain.get(&did).cloned() {
            self.replenish_inner_index(did, &keychain, lookahead);
        }
    }

    fn replenish_inner_index_keychain(&mut self, keychain: K, lookahead: u32) {
        if let Some(did) = self.keychain_to_descriptor_id.get(&keychain) {
            self.replenish_inner_index(*did, &keychain, lookahead);
        }
    }

    /// Syncs the state of the inner spk index after changes to a keychain
    fn replenish_inner_index(&mut self, did: DescriptorId, keychain: &K, lookahead: u32) {
        let descriptor = self.descriptors.get(&did).expect("invariant");
        let next_store_index = self
            .inner
            .all_spks()
            .range(&(keychain.clone(), u32::MIN)..=&(keychain.clone(), u32::MAX))
            .last()
            .map_or(0, |((_, index), _)| *index + 1);
        let next_reveal_index = self.last_revealed.get(&did).map_or(0, |v| *v + 1);
        for (new_index, new_spk) in
            SpkIterator::new_with_range(descriptor, next_store_index..next_reveal_index + lookahead)
        {
            let _inserted = self
                .inner
                .insert_spk((keychain.clone(), new_index), new_spk);
            debug_assert!(_inserted, "replenish lookahead: must not have existing spk: keychain={:?}, lookahead={}, next_store_index={}, next_reveal_index={}", keychain, lookahead, next_store_index, next_reveal_index);
        }
    }

    /// Get an unbounded spk iterator over a given `keychain`. Returns `None` if the provided
    /// keychain doesn't exist
    pub fn unbounded_spk_iter(
        &self,
        keychain: K,
    ) -> Option<SpkIterator<Descriptor<DescriptorPublicKey>>> {
        let descriptor = self.get_descriptor(keychain)?.clone();
        Some(SpkIterator::new(descriptor))
    }

    /// Get unbounded spk iterators for all keychains.
    pub fn all_unbounded_spk_iters(
        &self,
    ) -> BTreeMap<K, SpkIterator<Descriptor<DescriptorPublicKey>>> {
        self.keychain_to_descriptor_id
            .iter()
            .map(|(k, did)| {
                (
                    k.clone(),
                    SpkIterator::new(self.descriptors.get(did).expect("invariant").clone()),
                )
            })
            .collect()
    }

    /// Iterate over revealed spks of keychains in `range`
    pub fn revealed_spks(
        &self,
        range: impl RangeBounds<K>,
    ) -> impl Iterator<Item = KeychainIndexed<K, ScriptBuf>> + '_ {
        let start = range.start_bound();
        let end = range.end_bound();
        let mut iter_last_revealed = self
            .keychain_to_descriptor_id
            .range((start, end))
            .map(|(k, did)| (k, self.last_revealed.get(did).cloned()));
        let mut iter_spks = self
            .inner
            .all_spks()
            .range(self.map_to_inner_bounds((start, end)));
        let mut current_keychain = iter_last_revealed.next();
        // The reason we need a tricky algorithm is because of the "lookahead" feature which means
        // that some of the spks in the SpkTxoutIndex will not have been revealed yet. So we need to
        // filter out those spks that are above the last_revealed for that keychain. To do this we
        // iterate through the last_revealed for each keychain and the spks for each keychain in
        // tandem. This minimizes BTreeMap queries.
        core::iter::from_fn(move || loop {
            let ((keychain, index), spk) = iter_spks.next()?;
            // We need to find the last revealed that matches the current spk we are considering so
            // we skip ahead.
            while current_keychain?.0 < keychain {
                current_keychain = iter_last_revealed.next();
            }
            let (current_keychain, last_revealed) = current_keychain?;

            if current_keychain == keychain && Some(*index) <= last_revealed {
                break Some(((keychain.clone(), *index), spk.clone()));
            }
        })
    }

    /// Iterate over revealed spks of the given `keychain` with ascending indices.
    ///
    /// This is a double ended iterator so you can easily reverse it to get an iterator where
    /// the script pubkeys that were most recently revealed are first.
    pub fn revealed_keychain_spks(
        &self,
        keychain: K,
    ) -> impl DoubleEndedIterator<Item = Indexed<ScriptBuf>> + '_ {
        let end = self
            .last_revealed_index(keychain.clone())
            .map(|v| v + 1)
            .unwrap_or(0);
        self.inner
            .all_spks()
            .range((keychain.clone(), 0)..(keychain.clone(), end))
            .map(|((_, index), spk)| (*index, spk.clone()))
    }

    /// Iterate over revealed, but unused, spks of all keychains.
    pub fn unused_spks(
        &self,
    ) -> impl DoubleEndedIterator<Item = KeychainIndexed<K, ScriptBuf>> + Clone + '_ {
        self.keychain_to_descriptor_id.keys().flat_map(|keychain| {
            self.unused_keychain_spks(keychain.clone())
                .map(|(i, spk)| ((keychain.clone(), i), spk.clone()))
        })
    }

    /// Iterate over revealed, but unused, spks of the given `keychain`.
    /// Returns an empty iterator if the provided keychain doesn't exist.
    pub fn unused_keychain_spks(
        &self,
        keychain: K,
    ) -> impl DoubleEndedIterator<Item = Indexed<ScriptBuf>> + Clone + '_ {
        let end = match self.keychain_to_descriptor_id.get(&keychain) {
            Some(did) => self.last_revealed.get(did).map(|v| *v + 1).unwrap_or(0),
            None => 0,
        };

        self.inner
            .unused_spks((keychain.clone(), 0)..(keychain.clone(), end))
            .map(|((_, i), spk)| (*i, spk))
    }

    /// Get the next derivation index for `keychain`. The next index is the index after the last revealed
    /// derivation index.
    ///
    /// The second field in the returned tuple represents whether the next derivation index is new.
    /// There are two scenarios where the next derivation index is reused (not new):
    ///
    /// 1. The keychain's descriptor has no wildcard, and a script has already been revealed.
    /// 2. The number of revealed scripts has already reached 2^31 (refer to BIP-32).
    ///
    /// Not checking the second field of the tuple may result in address reuse.
    ///
    /// Returns None if the provided `keychain` doesn't exist.
    pub fn next_index(&self, keychain: K) -> Option<(u32, bool)> {
        let did = self.keychain_to_descriptor_id.get(&keychain)?;
        let last_index = self.last_revealed.get(did).cloned();
        let descriptor = self.descriptors.get(did).expect("invariant");

        // we can only get the next index if the wildcard exists.
        let has_wildcard = descriptor.has_wildcard();

        Some(match last_index {
            // if there is no index, next_index is always 0.
            None => (0, true),
            // descriptors without wildcards can only have one index.
            Some(_) if !has_wildcard => (0, false),
            // derivation index must be < 2^31 (BIP-32).
            Some(index) if index > BIP32_MAX_INDEX => {
                unreachable!("index is out of bounds")
            }
            Some(index) if index == BIP32_MAX_INDEX => (index, false),
            // get the next derivation index.
            Some(index) => (index + 1, true),
        })
    }

    /// Get the last derivation index that is revealed for each keychain.
    ///
    /// Keychains with no revealed indices will not be included in the returned [`BTreeMap`].
    pub fn last_revealed_indices(&self) -> BTreeMap<K, u32> {
        self.last_revealed
            .iter()
            .filter_map(|(desc_id, index)| {
                let keychain = self.descriptor_id_to_keychain.get(desc_id)?;
                Some((keychain.clone(), *index))
            })
            .collect()
    }

    /// Get the last derivation index revealed for `keychain`. Returns None if the keychain doesn't
    /// exist, or if the keychain doesn't have any revealed scripts.
    pub fn last_revealed_index(&self, keychain: K) -> Option<u32> {
        let descriptor_id = self.keychain_to_descriptor_id.get(&keychain)?;
        self.last_revealed.get(descriptor_id).cloned()
    }

    /// Convenience method to call [`Self::reveal_to_target`] on multiple keychains.
    pub fn reveal_to_target_multi(&mut self, keychains: &BTreeMap<K, u32>) -> ChangeSet {
        let mut changeset = ChangeSet::default();

        for (keychain, &index) in keychains {
            if let Some((_, new_changeset)) = self.reveal_to_target(keychain.clone(), index) {
                changeset.merge(new_changeset);
            }
        }

        changeset
    }

    /// Reveals script pubkeys of the `keychain`'s descriptor **up to and including** the
    /// `target_index`.
    ///
    /// If the `target_index` cannot be reached (due to the descriptor having no wildcard and/or
    /// the `target_index` is in the hardened index range), this method will make a best-effort and
    /// reveal up to the last possible index.
    ///
    /// This returns list of newly revealed indices (alongside their scripts) and a
    /// [`ChangeSet`], which reports updates to the latest revealed index. If no new script
    /// pubkeys are revealed, then both of these will be empty.
    ///
    /// Returns None if the provided `keychain` doesn't exist.
    #[must_use]
    pub fn reveal_to_target(
        &mut self,
        keychain: K,
        target_index: u32,
    ) -> Option<(Vec<Indexed<ScriptBuf>>, ChangeSet)> {
        let mut changeset = ChangeSet::default();
        let mut spks: Vec<Indexed<ScriptBuf>> = vec![];
        while let Some((i, new)) = self.next_index(keychain.clone()) {
            if !new || i > target_index {
                break;
            }
            match self.reveal_next_spk(keychain.clone()) {
                Some(((i, spk), change)) => {
                    spks.push((i, spk));
                    changeset.merge(change);
                }
                None => break,
            }
        }

        Some((spks, changeset))
    }

    /// Attempts to reveal the next script pubkey for `keychain`.
    ///
    /// Returns the derivation index of the revealed script pubkey, the revealed script pubkey and a
    /// [`ChangeSet`] which represents changes in the last revealed index (if any).
    /// Returns None if the provided keychain doesn't exist.
    ///
    /// When a new script cannot be revealed, we return the last revealed script and an empty
    /// [`ChangeSet`]. There are two scenarios when a new script pubkey cannot be derived:
    ///
    ///  1. The descriptor has no wildcard and already has one script revealed.
    ///  2. The descriptor has already revealed scripts up to the numeric bound.
    ///  3. There is no descriptor associated with the given keychain.
    pub fn reveal_next_spk(&mut self, keychain: K) -> Option<(Indexed<ScriptBuf>, ChangeSet)> {
        let (next_index, new) = self.next_index(keychain.clone())?;
        let mut changeset = ChangeSet::default();

        if new {
            let did = self.keychain_to_descriptor_id.get(&keychain)?;
            self.last_revealed.insert(*did, next_index);
            changeset.last_revealed.insert(*did, next_index);
            self.replenish_inner_index(*did, &keychain, self.lookahead);
        }
        let script = self
            .inner
            .spk_at_index(&(keychain.clone(), next_index))
            .expect("we just inserted it");
        Some(((next_index, script), changeset))
    }

    /// Gets the next unused script pubkey in the keychain. I.e., the script pubkey with the lowest
    /// index that has not been used yet.
    ///
    /// This will derive and reveal a new script pubkey if no more unused script pubkeys exist.
    ///
    /// If the descriptor has no wildcard and already has a used script pubkey or if a descriptor
    /// has used all scripts up to the derivation bounds, then the last derived script pubkey will be
    /// returned.
    ///
    /// Returns `None` if there are no script pubkeys that have been used and no new script pubkey
    /// could be revealed (see [`reveal_next_spk`] for when this happens).
    ///
    /// [`reveal_next_spk`]: Self::reveal_next_spk
    pub fn next_unused_spk(&mut self, keychain: K) -> Option<(Indexed<ScriptBuf>, ChangeSet)> {
        let next_unused = self
            .unused_keychain_spks(keychain.clone())
            .next()
            .map(|(i, spk)| ((i, spk.to_owned()), ChangeSet::default()));

        next_unused.or_else(|| self.reveal_next_spk(keychain))
    }

    /// Iterate over all [`OutPoint`]s that have `TxOut`s with script pubkeys derived from
    /// `keychain`.
    pub fn keychain_outpoints(
        &self,
        keychain: K,
    ) -> impl DoubleEndedIterator<Item = Indexed<OutPoint>> + '_ {
        self.keychain_outpoints_in_range(keychain.clone()..=keychain)
            .map(|((_, i), op)| (i, op))
    }

    /// Iterate over [`OutPoint`]s that have script pubkeys derived from keychains in `range`.
    pub fn keychain_outpoints_in_range<'a>(
        &'a self,
        range: impl RangeBounds<K> + 'a,
    ) -> impl DoubleEndedIterator<Item = KeychainIndexed<K, OutPoint>> + 'a {
        self.inner
            .outputs_in_range(self.map_to_inner_bounds(range))
            .map(|((k, i), op)| ((k.clone(), *i), op))
    }

    fn map_to_inner_bounds(&self, bound: impl RangeBounds<K>) -> impl RangeBounds<(K, u32)> {
        let start = match bound.start_bound() {
            Bound::Included(keychain) => Bound::Included((keychain.clone(), u32::MIN)),
            Bound::Excluded(keychain) => Bound::Excluded((keychain.clone(), u32::MAX)),
            Bound::Unbounded => Bound::Unbounded,
        };
        let end = match bound.end_bound() {
            Bound::Included(keychain) => Bound::Included((keychain.clone(), u32::MAX)),
            Bound::Excluded(keychain) => Bound::Excluded((keychain.clone(), u32::MIN)),
            Bound::Unbounded => Bound::Unbounded,
        };

        (start, end)
    }

    /// Returns the highest derivation index of the `keychain` where [`KeychainTxOutIndex`] has
    /// found a [`TxOut`] with it's script pubkey.
    pub fn last_used_index(&self, keychain: K) -> Option<u32> {
        self.keychain_outpoints(keychain).last().map(|(i, _)| i)
    }

    /// Returns the highest derivation index of each keychain that [`KeychainTxOutIndex`] has found
    /// a [`TxOut`] with it's script pubkey.
    pub fn last_used_indices(&self) -> BTreeMap<K, u32> {
        self.keychain_to_descriptor_id
            .iter()
            .filter_map(|(keychain, _)| {
                self.last_used_index(keychain.clone())
                    .map(|index| (keychain.clone(), index))
            })
            .collect()
    }

    /// Applies the `ChangeSet<K>` to the [`KeychainTxOutIndex<K>`]
    pub fn apply_changeset(&mut self, changeset: ChangeSet) {
        for (&desc_id, &index) in &changeset.last_revealed {
            let v = self.last_revealed.entry(desc_id).or_default();
            *v = index.max(*v);
            self.replenish_inner_index_did(desc_id, self.lookahead);
        }
    }
}

#[derive(Clone, Debug, PartialEq)]
/// Error returned from [`KeychainTxOutIndex::insert_descriptor`]
pub enum InsertDescriptorError<K> {
    /// The descriptor has already been assigned to a keychain so you can't assign it to another
    DescriptorAlreadyAssigned {
        /// The descriptor you have attempted to reassign
        descriptor: Descriptor<DescriptorPublicKey>,
        /// The keychain that the descriptor is already assigned to
        existing_assignment: K,
    },
    /// The keychain is already assigned to a descriptor so you can't reassign it
    KeychainAlreadyAssigned {
        /// The keychain that you have attempted to reassign
        keychain: K,
        /// The descriptor that the keychain is already assigned to
        existing_assignment: Descriptor<DescriptorPublicKey>,
    },
}

impl<K: core::fmt::Debug> core::fmt::Display for InsertDescriptorError<K> {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        match self {
            InsertDescriptorError::DescriptorAlreadyAssigned {
                existing_assignment: existing,
                descriptor,
            } => {
                write!(
                    f,
                    "attempt to re-assign descriptor {descriptor:?} already assigned to {existing:?}"
                )
            }
            InsertDescriptorError::KeychainAlreadyAssigned {
                existing_assignment: existing,
                keychain,
            } => {
                write!(
                    f,
                    "attempt to re-assign keychain {keychain:?} already assigned to {existing:?}"
                )
            }
        }
    }
}

#[cfg(feature = "std")]
impl<K: core::fmt::Debug> std::error::Error for InsertDescriptorError<K> {}

/// Represents updates to the derivation index of a [`KeychainTxOutIndex`].
/// It maps each keychain `K` to a descriptor and its last revealed index.
///
/// It can be applied to [`KeychainTxOutIndex`] with [`apply_changeset`].
///
/// The `last_revealed` field is monotone in that [`merge`] will never decrease it.
/// `keychains_added` is *not* monotone, once it is set any attempt to change it is subject to the
/// same *one-to-one* keychain <-> descriptor mapping invariant as [`KeychainTxOutIndex`] itself.
///
/// [`KeychainTxOutIndex`]: crate::keychain_txout::KeychainTxOutIndex
/// [`apply_changeset`]: crate::keychain_txout::KeychainTxOutIndex::apply_changeset
/// [`merge`]: Self::merge
#[derive(Clone, Debug, Default, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
#[must_use]
pub struct ChangeSet {
    /// Contains for each descriptor_id the last revealed index of derivation
    pub last_revealed: BTreeMap<DescriptorId, u32>,
}

impl Merge for ChangeSet {
    /// Merge another [`ChangeSet`] into self.
    fn merge(&mut self, other: Self) {
        // for `last_revealed`, entries of `other` will take precedence ONLY if it is greater than
        // what was originally in `self`.
        for (desc_id, index) in other.last_revealed {
            use crate::collections::btree_map::Entry;
            match self.last_revealed.entry(desc_id) {
                Entry::Vacant(entry) => {
                    entry.insert(index);
                }
                Entry::Occupied(mut entry) => {
                    if *entry.get() < index {
                        entry.insert(index);
                    }
                }
            }
        }
    }

    /// Returns whether the changeset are empty.
    fn is_empty(&self) -> bool {
        self.last_revealed.is_empty()
    }
}

/// Trait to extend [`SyncRequestBuilder`].
pub trait SyncRequestBuilderExt<K> {
    /// Add [`Script`](bitcoin::Script)s that are revealed by the `indexer` of the given `spk_range`
    /// that will be synced against.
    fn revealed_spks_from_indexer<R>(self, indexer: &KeychainTxOutIndex<K>, spk_range: R) -> Self
    where
        R: core::ops::RangeBounds<K>;

    /// Add [`Script`](bitcoin::Script)s that are revealed by the `indexer` but currently unused.
    fn unused_spks_from_indexer(self, indexer: &KeychainTxOutIndex<K>) -> Self;
}

impl<K: Clone + Ord + core::fmt::Debug> SyncRequestBuilderExt<K> for SyncRequestBuilder<(K, u32)> {
    fn revealed_spks_from_indexer<R>(self, indexer: &KeychainTxOutIndex<K>, spk_range: R) -> Self
    where
        R: core::ops::RangeBounds<K>,
    {
        self.spks_with_indexes(indexer.revealed_spks(spk_range))
    }

    fn unused_spks_from_indexer(self, indexer: &KeychainTxOutIndex<K>) -> Self {
        self.spks_with_indexes(indexer.unused_spks())
    }
}

/// Trait to extend [`FullScanRequestBuilder`].
pub trait FullScanRequestBuilderExt<K> {
    /// Add spk iterators for each keychain tracked in `indexer`.
    fn spks_from_indexer(self, indexer: &KeychainTxOutIndex<K>) -> Self;
}

impl<K: Clone + Ord + core::fmt::Debug> FullScanRequestBuilderExt<K> for FullScanRequestBuilder<K> {
    fn spks_from_indexer(mut self, indexer: &KeychainTxOutIndex<K>) -> Self {
        for (keychain, spks) in indexer.all_unbounded_spk_iters() {
            self = self.spks_for_keychain(keychain, spks);
        }
        self
    }
}