1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
//! [`KeychainTxOutIndex`] controls how script pubkeys are revealed for multiple keychains and
//! indexes [`TxOut`]s with them.
use crate::{
collections::*,
miniscript::{Descriptor, DescriptorPublicKey},
spk_client::{FullScanRequestBuilder, SyncRequestBuilder},
spk_iter::BIP32_MAX_INDEX,
spk_txout::SpkTxOutIndex,
DescriptorExt, DescriptorId, Indexed, Indexer, KeychainIndexed, SpkIterator,
};
use alloc::{borrow::ToOwned, vec::Vec};
use bitcoin::{Amount, OutPoint, ScriptBuf, SignedAmount, Transaction, TxOut, Txid};
use core::{
fmt::Debug,
ops::{Bound, RangeBounds},
};
use crate::Merge;
/// The default lookahead for a [`KeychainTxOutIndex`]
pub const DEFAULT_LOOKAHEAD: u32 = 25;
/// [`KeychainTxOutIndex`] controls how script pubkeys are revealed for multiple keychains, and
/// indexes [`TxOut`]s with them.
///
/// A single keychain is a chain of script pubkeys derived from a single [`Descriptor`]. Keychains
/// are identified using the `K` generic. Script pubkeys are identified by the keychain that they
/// are derived from `K`, as well as the derivation index `u32`.
///
/// There is a strict 1-to-1 relationship between descriptors and keychains. Each keychain has one
/// and only one descriptor and each descriptor has one and only one keychain. The
/// [`insert_descriptor`] method will return an error if you try and violate this invariant. This
/// rule is a proxy for a stronger rule: no two descriptors should produce the same script pubkey.
/// Having two descriptors produce the same script pubkey should cause whichever keychain derives
/// the script pubkey first to be the effective owner of it but you should not rely on this
/// behaviour. ⚠ It is up you, the developer, not to violate this invariant.
///
/// # Revealed script pubkeys
///
/// Tracking how script pubkeys are revealed is useful for collecting chain data. For example, if
/// the user has requested 5 script pubkeys (to receive money with), we only need to use those
/// script pubkeys to scan for chain data.
///
/// Call [`reveal_to_target`] or [`reveal_next_spk`] to reveal more script pubkeys.
/// Call [`revealed_keychain_spks`] or [`revealed_spks`] to iterate through revealed script pubkeys.
///
/// # Lookahead script pubkeys
///
/// When an user first recovers a wallet (i.e. from a recovery phrase and/or descriptor), we will
/// NOT have knowledge of which script pubkeys are revealed. So when we index a transaction or
/// txout (using [`index_tx`]/[`index_txout`]) we scan the txouts against script pubkeys derived
/// above the last revealed index. These additionally-derived script pubkeys are called the
/// lookahead.
///
/// The [`KeychainTxOutIndex`] is constructed with the `lookahead` and cannot be altered. See
/// [`DEFAULT_LOOKAHEAD`] for the value used in the `Default` implementation. Use [`new`] to set a
/// custom `lookahead`.
///
/// # Unbounded script pubkey iterator
///
/// For script-pubkey-based chain sources (such as Electrum/Esplora), an initial scan is best done
/// by iterating though derived script pubkeys one by one and requesting transaction histories for
/// each script pubkey. We will stop after x-number of script pubkeys have empty histories. An
/// unbounded script pubkey iterator is useful to pass to such a chain source because it doesn't
/// require holding a reference to the index.
///
/// Call [`unbounded_spk_iter`] to get an unbounded script pubkey iterator for a given keychain.
/// Call [`all_unbounded_spk_iters`] to get unbounded script pubkey iterators for all keychains.
///
/// # Change sets
///
/// Methods that can update the last revealed index or add keychains will return [`ChangeSet`] to report
/// these changes. This should be persisted for future recovery.
///
/// ## Synopsis
///
/// ```
/// use bdk_chain::indexer::keychain_txout::KeychainTxOutIndex;
/// # use bdk_chain::{ miniscript::{Descriptor, DescriptorPublicKey} };
/// # use core::str::FromStr;
///
/// // imagine our service has internal and external addresses but also addresses for users
/// #[derive(Clone, Debug, PartialEq, Eq, Ord, PartialOrd)]
/// enum MyKeychain {
/// External,
/// Internal,
/// MyAppUser {
/// user_id: u32
/// }
/// }
///
/// let mut txout_index = KeychainTxOutIndex::<MyKeychain>::default();
///
/// # let secp = bdk_chain::bitcoin::secp256k1::Secp256k1::signing_only();
/// # let (external_descriptor,_) = Descriptor::<DescriptorPublicKey>::parse_descriptor(&secp, "tr([73c5da0a/86'/0'/0']xprv9xgqHN7yz9MwCkxsBPN5qetuNdQSUttZNKw1dcYTV4mkaAFiBVGQziHs3NRSWMkCzvgjEe3n9xV8oYywvM8at9yRqyaZVz6TYYhX98VjsUk/0/*)").unwrap();
/// # let (internal_descriptor,_) = Descriptor::<DescriptorPublicKey>::parse_descriptor(&secp, "tr([73c5da0a/86'/0'/0']xprv9xgqHN7yz9MwCkxsBPN5qetuNdQSUttZNKw1dcYTV4mkaAFiBVGQziHs3NRSWMkCzvgjEe3n9xV8oYywvM8at9yRqyaZVz6TYYhX98VjsUk/1/*)").unwrap();
/// # let (descriptor_42, _) = Descriptor::<DescriptorPublicKey>::parse_descriptor(&secp, "tr([73c5da0a/86'/0'/0']xprv9xgqHN7yz9MwCkxsBPN5qetuNdQSUttZNKw1dcYTV4mkaAFiBVGQziHs3NRSWMkCzvgjEe3n9xV8oYywvM8at9yRqyaZVz6TYYhX98VjsUk/2/*)").unwrap();
/// let _ = txout_index.insert_descriptor(MyKeychain::External, external_descriptor)?;
/// let _ = txout_index.insert_descriptor(MyKeychain::Internal, internal_descriptor)?;
/// let _ = txout_index.insert_descriptor(MyKeychain::MyAppUser { user_id: 42 }, descriptor_42)?;
///
/// let new_spk_for_user = txout_index.reveal_next_spk(MyKeychain::MyAppUser{ user_id: 42 });
/// # Ok::<_, bdk_chain::indexer::keychain_txout::InsertDescriptorError<_>>(())
/// ```
///
/// [`Ord`]: core::cmp::Ord
/// [`SpkTxOutIndex`]: crate::spk_txout_index::SpkTxOutIndex
/// [`Descriptor`]: crate::miniscript::Descriptor
/// [`reveal_to_target`]: Self::reveal_to_target
/// [`reveal_next_spk`]: Self::reveal_next_spk
/// [`revealed_keychain_spks`]: Self::revealed_keychain_spks
/// [`revealed_spks`]: Self::revealed_spks
/// [`index_tx`]: Self::index_tx
/// [`index_txout`]: Self::index_txout
/// [`new`]: Self::new
/// [`unbounded_spk_iter`]: Self::unbounded_spk_iter
/// [`all_unbounded_spk_iters`]: Self::all_unbounded_spk_iters
/// [`outpoints`]: Self::outpoints
/// [`txouts`]: Self::txouts
/// [`unused_spks`]: Self::unused_spks
/// [`insert_descriptor`]: Self::insert_descriptor
#[derive(Clone, Debug)]
pub struct KeychainTxOutIndex<K> {
inner: SpkTxOutIndex<(K, u32)>,
keychain_to_descriptor_id: BTreeMap<K, DescriptorId>,
descriptor_id_to_keychain: HashMap<DescriptorId, K>,
descriptors: HashMap<DescriptorId, Descriptor<DescriptorPublicKey>>,
last_revealed: HashMap<DescriptorId, u32>,
lookahead: u32,
}
impl<K> Default for KeychainTxOutIndex<K> {
fn default() -> Self {
Self::new(DEFAULT_LOOKAHEAD)
}
}
impl<K: Clone + Ord + Debug> Indexer for KeychainTxOutIndex<K> {
type ChangeSet = ChangeSet;
fn index_txout(&mut self, outpoint: OutPoint, txout: &TxOut) -> Self::ChangeSet {
let mut changeset = ChangeSet::default();
if let Some((keychain, index)) = self.inner.scan_txout(outpoint, txout).cloned() {
let did = self
.keychain_to_descriptor_id
.get(&keychain)
.expect("invariant");
if self.last_revealed.get(did) < Some(&index) {
self.last_revealed.insert(*did, index);
changeset.last_revealed.insert(*did, index);
self.replenish_inner_index(*did, &keychain, self.lookahead);
}
}
changeset
}
fn index_tx(&mut self, tx: &bitcoin::Transaction) -> Self::ChangeSet {
let mut changeset = ChangeSet::default();
let txid = tx.compute_txid();
for (op, txout) in tx.output.iter().enumerate() {
changeset.merge(self.index_txout(OutPoint::new(txid, op as u32), txout));
}
changeset
}
fn initial_changeset(&self) -> Self::ChangeSet {
ChangeSet {
last_revealed: self.last_revealed.clone().into_iter().collect(),
}
}
fn apply_changeset(&mut self, changeset: Self::ChangeSet) {
self.apply_changeset(changeset)
}
fn is_tx_relevant(&self, tx: &bitcoin::Transaction) -> bool {
self.inner.is_relevant(tx)
}
}
impl<K> KeychainTxOutIndex<K> {
/// Construct a [`KeychainTxOutIndex`] with the given `lookahead`.
///
/// The `lookahead` is the number of script pubkeys to derive and cache from the internal
/// descriptors over and above the last revealed script index. Without a lookahead the index
/// will miss outputs you own when processing transactions whose output script pubkeys lie
/// beyond the last revealed index. In certain situations, such as when performing an initial
/// scan of the blockchain during wallet import, it may be uncertain or unknown what the index
/// of the last revealed script pubkey actually is.
///
/// Refer to [struct-level docs](KeychainTxOutIndex) for more about `lookahead`.
pub fn new(lookahead: u32) -> Self {
Self {
inner: SpkTxOutIndex::default(),
keychain_to_descriptor_id: Default::default(),
descriptors: Default::default(),
descriptor_id_to_keychain: Default::default(),
last_revealed: Default::default(),
lookahead,
}
}
}
/// Methods that are *re-exposed* from the internal [`SpkTxOutIndex`].
impl<K: Clone + Ord + Debug> KeychainTxOutIndex<K> {
/// Get the set of indexed outpoints, corresponding to tracked keychains.
pub fn outpoints(&self) -> &BTreeSet<KeychainIndexed<K, OutPoint>> {
self.inner.outpoints()
}
/// Iterate over known txouts that spend to tracked script pubkeys.
pub fn txouts(
&self,
) -> impl DoubleEndedIterator<Item = KeychainIndexed<K, (OutPoint, &TxOut)>> + ExactSizeIterator
{
self.inner
.txouts()
.map(|(index, op, txout)| (index.clone(), (op, txout)))
}
/// Finds all txouts on a transaction that has previously been scanned and indexed.
pub fn txouts_in_tx(
&self,
txid: Txid,
) -> impl DoubleEndedIterator<Item = KeychainIndexed<K, (OutPoint, &TxOut)>> {
self.inner
.txouts_in_tx(txid)
.map(|(index, op, txout)| (index.clone(), (op, txout)))
}
/// Return the [`TxOut`] of `outpoint` if it has been indexed, and if it corresponds to a
/// tracked keychain.
///
/// The associated keychain and keychain index of the txout's spk is also returned.
///
/// This calls [`SpkTxOutIndex::txout`] internally.
pub fn txout(&self, outpoint: OutPoint) -> Option<KeychainIndexed<K, &TxOut>> {
self.inner
.txout(outpoint)
.map(|(index, txout)| (index.clone(), txout))
}
/// Return the script that exists under the given `keychain`'s `index`.
///
/// This calls [`SpkTxOutIndex::spk_at_index`] internally.
pub fn spk_at_index(&self, keychain: K, index: u32) -> Option<ScriptBuf> {
self.inner.spk_at_index(&(keychain.clone(), index))
}
/// Returns the keychain and keychain index associated with the spk.
///
/// This calls [`SpkTxOutIndex::index_of_spk`] internally.
pub fn index_of_spk(&self, script: ScriptBuf) -> Option<&(K, u32)> {
self.inner.index_of_spk(script)
}
/// Returns whether the spk under the `keychain`'s `index` has been used.
///
/// Here, "unused" means that after the script pubkey was stored in the index, the index has
/// never scanned a transaction output with it.
///
/// This calls [`SpkTxOutIndex::is_used`] internally.
pub fn is_used(&self, keychain: K, index: u32) -> bool {
self.inner.is_used(&(keychain, index))
}
/// Marks the script pubkey at `index` as used even though the tracker hasn't seen an output
/// with it.
///
/// This only has an effect when the `index` had been added to `self` already and was unused.
///
/// Returns whether the spk under the given `keychain` and `index` is successfully
/// marked as used. Returns false either when there is no descriptor under the given
/// keychain, or when the spk is already marked as used.
///
/// This is useful when you want to reserve a script pubkey for something but don't want to add
/// the transaction output using it to the index yet. Other callers will consider `index` on
/// `keychain` used until you call [`unmark_used`].
///
/// This calls [`SpkTxOutIndex::mark_used`] internally.
///
/// [`unmark_used`]: Self::unmark_used
pub fn mark_used(&mut self, keychain: K, index: u32) -> bool {
self.inner.mark_used(&(keychain, index))
}
/// Undoes the effect of [`mark_used`]. Returns whether the `index` is inserted back into
/// `unused`.
///
/// Note that if `self` has scanned an output with this script pubkey, then this will have no
/// effect.
///
/// This calls [`SpkTxOutIndex::unmark_used`] internally.
///
/// [`mark_used`]: Self::mark_used
pub fn unmark_used(&mut self, keychain: K, index: u32) -> bool {
self.inner.unmark_used(&(keychain, index))
}
/// Computes the total value transfer effect `tx` has on the script pubkeys belonging to the
/// keychains in `range`. Value is *sent* when a script pubkey in the `range` is on an input and
/// *received* when it is on an output. For `sent` to be computed correctly, the output being
/// spent must have already been scanned by the index. Calculating received just uses the
/// [`Transaction`] outputs directly, so it will be correct even if it has not been scanned.
pub fn sent_and_received(
&self,
tx: &Transaction,
range: impl RangeBounds<K>,
) -> (Amount, Amount) {
self.inner
.sent_and_received(tx, self.map_to_inner_bounds(range))
}
/// Computes the net value that this transaction gives to the script pubkeys in the index and
/// *takes* from the transaction outputs in the index. Shorthand for calling
/// [`sent_and_received`] and subtracting sent from received.
///
/// This calls [`SpkTxOutIndex::net_value`] internally.
///
/// [`sent_and_received`]: Self::sent_and_received
pub fn net_value(&self, tx: &Transaction, range: impl RangeBounds<K>) -> SignedAmount {
self.inner.net_value(tx, self.map_to_inner_bounds(range))
}
}
impl<K: Clone + Ord + Debug> KeychainTxOutIndex<K> {
/// Return all keychains and their corresponding descriptors.
pub fn keychains(
&self,
) -> impl DoubleEndedIterator<Item = (K, &Descriptor<DescriptorPublicKey>)> + ExactSizeIterator + '_
{
self.keychain_to_descriptor_id
.iter()
.map(|(k, did)| (k.clone(), self.descriptors.get(did).expect("invariant")))
}
/// Insert a descriptor with a keychain associated to it.
///
/// Adding a descriptor means you will be able to derive new script pubkeys under it and the
/// txout index will discover transaction outputs with those script pubkeys (once they've been
/// derived and added to the index).
///
/// keychain <-> descriptor is a one-to-one mapping that cannot be changed. Attempting to do so
/// will return a [`InsertDescriptorError<K>`].
///
/// [`KeychainTxOutIndex`] will prevent you from inserting two descriptors which derive the same
/// script pubkey at index 0, but it's up to you to ensure that descriptors don't collide at
/// other indices. If they do nothing catastrophic happens at the `KeychainTxOutIndex` level
/// (one keychain just becomes the defacto owner of that spk arbitrarily) but this may have
/// subtle implications up the application stack like one UTXO being missing from one keychain
/// because it has been assigned to another which produces the same script pubkey.
pub fn insert_descriptor(
&mut self,
keychain: K,
descriptor: Descriptor<DescriptorPublicKey>,
) -> Result<bool, InsertDescriptorError<K>> {
let did = descriptor.descriptor_id();
if !self.keychain_to_descriptor_id.contains_key(&keychain)
&& !self.descriptor_id_to_keychain.contains_key(&did)
{
self.descriptors.insert(did, descriptor.clone());
self.keychain_to_descriptor_id.insert(keychain.clone(), did);
self.descriptor_id_to_keychain.insert(did, keychain.clone());
self.replenish_inner_index(did, &keychain, self.lookahead);
return Ok(true);
}
if let Some(existing_desc_id) = self.keychain_to_descriptor_id.get(&keychain) {
let descriptor = self.descriptors.get(existing_desc_id).expect("invariant");
if *existing_desc_id != did {
return Err(InsertDescriptorError::KeychainAlreadyAssigned {
existing_assignment: descriptor.clone(),
keychain,
});
}
}
if let Some(existing_keychain) = self.descriptor_id_to_keychain.get(&did) {
let descriptor = self.descriptors.get(&did).expect("invariant").clone();
if *existing_keychain != keychain {
return Err(InsertDescriptorError::DescriptorAlreadyAssigned {
existing_assignment: existing_keychain.clone(),
descriptor,
});
}
}
Ok(false)
}
/// Gets the descriptor associated with the keychain. Returns `None` if the keychain doesn't
/// have a descriptor associated with it.
pub fn get_descriptor(&self, keychain: K) -> Option<&Descriptor<DescriptorPublicKey>> {
let did = self.keychain_to_descriptor_id.get(&keychain)?;
self.descriptors.get(did)
}
/// Get the lookahead setting.
///
/// Refer to [`new`] for more information on the `lookahead`.
///
/// [`new`]: Self::new
pub fn lookahead(&self) -> u32 {
self.lookahead
}
/// Store lookahead scripts until `target_index` (inclusive).
///
/// This does not change the global `lookahead` setting.
pub fn lookahead_to_target(&mut self, keychain: K, target_index: u32) {
if let Some((next_index, _)) = self.next_index(keychain.clone()) {
let temp_lookahead = (target_index + 1)
.checked_sub(next_index)
.filter(|&index| index > 0);
if let Some(temp_lookahead) = temp_lookahead {
self.replenish_inner_index_keychain(keychain, temp_lookahead);
}
}
}
fn replenish_inner_index_did(&mut self, did: DescriptorId, lookahead: u32) {
if let Some(keychain) = self.descriptor_id_to_keychain.get(&did).cloned() {
self.replenish_inner_index(did, &keychain, lookahead);
}
}
fn replenish_inner_index_keychain(&mut self, keychain: K, lookahead: u32) {
if let Some(did) = self.keychain_to_descriptor_id.get(&keychain) {
self.replenish_inner_index(*did, &keychain, lookahead);
}
}
/// Syncs the state of the inner spk index after changes to a keychain
fn replenish_inner_index(&mut self, did: DescriptorId, keychain: &K, lookahead: u32) {
let descriptor = self.descriptors.get(&did).expect("invariant");
let next_store_index = self
.inner
.all_spks()
.range(&(keychain.clone(), u32::MIN)..=&(keychain.clone(), u32::MAX))
.last()
.map_or(0, |((_, index), _)| *index + 1);
let next_reveal_index = self.last_revealed.get(&did).map_or(0, |v| *v + 1);
for (new_index, new_spk) in
SpkIterator::new_with_range(descriptor, next_store_index..next_reveal_index + lookahead)
{
let _inserted = self
.inner
.insert_spk((keychain.clone(), new_index), new_spk);
debug_assert!(_inserted, "replenish lookahead: must not have existing spk: keychain={:?}, lookahead={}, next_store_index={}, next_reveal_index={}", keychain, lookahead, next_store_index, next_reveal_index);
}
}
/// Get an unbounded spk iterator over a given `keychain`. Returns `None` if the provided
/// keychain doesn't exist
pub fn unbounded_spk_iter(
&self,
keychain: K,
) -> Option<SpkIterator<Descriptor<DescriptorPublicKey>>> {
let descriptor = self.get_descriptor(keychain)?.clone();
Some(SpkIterator::new(descriptor))
}
/// Get unbounded spk iterators for all keychains.
pub fn all_unbounded_spk_iters(
&self,
) -> BTreeMap<K, SpkIterator<Descriptor<DescriptorPublicKey>>> {
self.keychain_to_descriptor_id
.iter()
.map(|(k, did)| {
(
k.clone(),
SpkIterator::new(self.descriptors.get(did).expect("invariant").clone()),
)
})
.collect()
}
/// Iterate over revealed spks of keychains in `range`
pub fn revealed_spks(
&self,
range: impl RangeBounds<K>,
) -> impl Iterator<Item = KeychainIndexed<K, ScriptBuf>> + '_ {
let start = range.start_bound();
let end = range.end_bound();
let mut iter_last_revealed = self
.keychain_to_descriptor_id
.range((start, end))
.map(|(k, did)| (k, self.last_revealed.get(did).cloned()));
let mut iter_spks = self
.inner
.all_spks()
.range(self.map_to_inner_bounds((start, end)));
let mut current_keychain = iter_last_revealed.next();
// The reason we need a tricky algorithm is because of the "lookahead" feature which means
// that some of the spks in the SpkTxoutIndex will not have been revealed yet. So we need to
// filter out those spks that are above the last_revealed for that keychain. To do this we
// iterate through the last_revealed for each keychain and the spks for each keychain in
// tandem. This minimizes BTreeMap queries.
core::iter::from_fn(move || loop {
let ((keychain, index), spk) = iter_spks.next()?;
// We need to find the last revealed that matches the current spk we are considering so
// we skip ahead.
while current_keychain?.0 < keychain {
current_keychain = iter_last_revealed.next();
}
let (current_keychain, last_revealed) = current_keychain?;
if current_keychain == keychain && Some(*index) <= last_revealed {
break Some(((keychain.clone(), *index), spk.clone()));
}
})
}
/// Iterate over revealed spks of the given `keychain` with ascending indices.
///
/// This is a double ended iterator so you can easily reverse it to get an iterator where
/// the script pubkeys that were most recently revealed are first.
pub fn revealed_keychain_spks(
&self,
keychain: K,
) -> impl DoubleEndedIterator<Item = Indexed<ScriptBuf>> + '_ {
let end = self
.last_revealed_index(keychain.clone())
.map(|v| v + 1)
.unwrap_or(0);
self.inner
.all_spks()
.range((keychain.clone(), 0)..(keychain.clone(), end))
.map(|((_, index), spk)| (*index, spk.clone()))
}
/// Iterate over revealed, but unused, spks of all keychains.
pub fn unused_spks(
&self,
) -> impl DoubleEndedIterator<Item = KeychainIndexed<K, ScriptBuf>> + Clone + '_ {
self.keychain_to_descriptor_id.keys().flat_map(|keychain| {
self.unused_keychain_spks(keychain.clone())
.map(|(i, spk)| ((keychain.clone(), i), spk.clone()))
})
}
/// Iterate over revealed, but unused, spks of the given `keychain`.
/// Returns an empty iterator if the provided keychain doesn't exist.
pub fn unused_keychain_spks(
&self,
keychain: K,
) -> impl DoubleEndedIterator<Item = Indexed<ScriptBuf>> + Clone + '_ {
let end = match self.keychain_to_descriptor_id.get(&keychain) {
Some(did) => self.last_revealed.get(did).map(|v| *v + 1).unwrap_or(0),
None => 0,
};
self.inner
.unused_spks((keychain.clone(), 0)..(keychain.clone(), end))
.map(|((_, i), spk)| (*i, spk))
}
/// Get the next derivation index for `keychain`. The next index is the index after the last revealed
/// derivation index.
///
/// The second field in the returned tuple represents whether the next derivation index is new.
/// There are two scenarios where the next derivation index is reused (not new):
///
/// 1. The keychain's descriptor has no wildcard, and a script has already been revealed.
/// 2. The number of revealed scripts has already reached 2^31 (refer to BIP-32).
///
/// Not checking the second field of the tuple may result in address reuse.
///
/// Returns None if the provided `keychain` doesn't exist.
pub fn next_index(&self, keychain: K) -> Option<(u32, bool)> {
let did = self.keychain_to_descriptor_id.get(&keychain)?;
let last_index = self.last_revealed.get(did).cloned();
let descriptor = self.descriptors.get(did).expect("invariant");
// we can only get the next index if the wildcard exists.
let has_wildcard = descriptor.has_wildcard();
Some(match last_index {
// if there is no index, next_index is always 0.
None => (0, true),
// descriptors without wildcards can only have one index.
Some(_) if !has_wildcard => (0, false),
// derivation index must be < 2^31 (BIP-32).
Some(index) if index > BIP32_MAX_INDEX => {
unreachable!("index is out of bounds")
}
Some(index) if index == BIP32_MAX_INDEX => (index, false),
// get the next derivation index.
Some(index) => (index + 1, true),
})
}
/// Get the last derivation index that is revealed for each keychain.
///
/// Keychains with no revealed indices will not be included in the returned [`BTreeMap`].
pub fn last_revealed_indices(&self) -> BTreeMap<K, u32> {
self.last_revealed
.iter()
.filter_map(|(desc_id, index)| {
let keychain = self.descriptor_id_to_keychain.get(desc_id)?;
Some((keychain.clone(), *index))
})
.collect()
}
/// Get the last derivation index revealed for `keychain`. Returns None if the keychain doesn't
/// exist, or if the keychain doesn't have any revealed scripts.
pub fn last_revealed_index(&self, keychain: K) -> Option<u32> {
let descriptor_id = self.keychain_to_descriptor_id.get(&keychain)?;
self.last_revealed.get(descriptor_id).cloned()
}
/// Convenience method to call [`Self::reveal_to_target`] on multiple keychains.
pub fn reveal_to_target_multi(&mut self, keychains: &BTreeMap<K, u32>) -> ChangeSet {
let mut changeset = ChangeSet::default();
for (keychain, &index) in keychains {
if let Some((_, new_changeset)) = self.reveal_to_target(keychain.clone(), index) {
changeset.merge(new_changeset);
}
}
changeset
}
/// Reveals script pubkeys of the `keychain`'s descriptor **up to and including** the
/// `target_index`.
///
/// If the `target_index` cannot be reached (due to the descriptor having no wildcard and/or
/// the `target_index` is in the hardened index range), this method will make a best-effort and
/// reveal up to the last possible index.
///
/// This returns list of newly revealed indices (alongside their scripts) and a
/// [`ChangeSet`], which reports updates to the latest revealed index. If no new script
/// pubkeys are revealed, then both of these will be empty.
///
/// Returns None if the provided `keychain` doesn't exist.
#[must_use]
pub fn reveal_to_target(
&mut self,
keychain: K,
target_index: u32,
) -> Option<(Vec<Indexed<ScriptBuf>>, ChangeSet)> {
let mut changeset = ChangeSet::default();
let mut spks: Vec<Indexed<ScriptBuf>> = vec![];
while let Some((i, new)) = self.next_index(keychain.clone()) {
if !new || i > target_index {
break;
}
match self.reveal_next_spk(keychain.clone()) {
Some(((i, spk), change)) => {
spks.push((i, spk));
changeset.merge(change);
}
None => break,
}
}
Some((spks, changeset))
}
/// Attempts to reveal the next script pubkey for `keychain`.
///
/// Returns the derivation index of the revealed script pubkey, the revealed script pubkey and a
/// [`ChangeSet`] which represents changes in the last revealed index (if any).
/// Returns None if the provided keychain doesn't exist.
///
/// When a new script cannot be revealed, we return the last revealed script and an empty
/// [`ChangeSet`]. There are two scenarios when a new script pubkey cannot be derived:
///
/// 1. The descriptor has no wildcard and already has one script revealed.
/// 2. The descriptor has already revealed scripts up to the numeric bound.
/// 3. There is no descriptor associated with the given keychain.
pub fn reveal_next_spk(&mut self, keychain: K) -> Option<(Indexed<ScriptBuf>, ChangeSet)> {
let (next_index, new) = self.next_index(keychain.clone())?;
let mut changeset = ChangeSet::default();
if new {
let did = self.keychain_to_descriptor_id.get(&keychain)?;
self.last_revealed.insert(*did, next_index);
changeset.last_revealed.insert(*did, next_index);
self.replenish_inner_index(*did, &keychain, self.lookahead);
}
let script = self
.inner
.spk_at_index(&(keychain.clone(), next_index))
.expect("we just inserted it");
Some(((next_index, script), changeset))
}
/// Gets the next unused script pubkey in the keychain. I.e., the script pubkey with the lowest
/// index that has not been used yet.
///
/// This will derive and reveal a new script pubkey if no more unused script pubkeys exist.
///
/// If the descriptor has no wildcard and already has a used script pubkey or if a descriptor
/// has used all scripts up to the derivation bounds, then the last derived script pubkey will be
/// returned.
///
/// Returns `None` if there are no script pubkeys that have been used and no new script pubkey
/// could be revealed (see [`reveal_next_spk`] for when this happens).
///
/// [`reveal_next_spk`]: Self::reveal_next_spk
pub fn next_unused_spk(&mut self, keychain: K) -> Option<(Indexed<ScriptBuf>, ChangeSet)> {
let next_unused = self
.unused_keychain_spks(keychain.clone())
.next()
.map(|(i, spk)| ((i, spk.to_owned()), ChangeSet::default()));
next_unused.or_else(|| self.reveal_next_spk(keychain))
}
/// Iterate over all [`OutPoint`]s that have `TxOut`s with script pubkeys derived from
/// `keychain`.
pub fn keychain_outpoints(
&self,
keychain: K,
) -> impl DoubleEndedIterator<Item = Indexed<OutPoint>> + '_ {
self.keychain_outpoints_in_range(keychain.clone()..=keychain)
.map(|((_, i), op)| (i, op))
}
/// Iterate over [`OutPoint`]s that have script pubkeys derived from keychains in `range`.
pub fn keychain_outpoints_in_range<'a>(
&'a self,
range: impl RangeBounds<K> + 'a,
) -> impl DoubleEndedIterator<Item = KeychainIndexed<K, OutPoint>> + 'a {
self.inner
.outputs_in_range(self.map_to_inner_bounds(range))
.map(|((k, i), op)| ((k.clone(), *i), op))
}
fn map_to_inner_bounds(&self, bound: impl RangeBounds<K>) -> impl RangeBounds<(K, u32)> {
let start = match bound.start_bound() {
Bound::Included(keychain) => Bound::Included((keychain.clone(), u32::MIN)),
Bound::Excluded(keychain) => Bound::Excluded((keychain.clone(), u32::MAX)),
Bound::Unbounded => Bound::Unbounded,
};
let end = match bound.end_bound() {
Bound::Included(keychain) => Bound::Included((keychain.clone(), u32::MAX)),
Bound::Excluded(keychain) => Bound::Excluded((keychain.clone(), u32::MIN)),
Bound::Unbounded => Bound::Unbounded,
};
(start, end)
}
/// Returns the highest derivation index of the `keychain` where [`KeychainTxOutIndex`] has
/// found a [`TxOut`] with it's script pubkey.
pub fn last_used_index(&self, keychain: K) -> Option<u32> {
self.keychain_outpoints(keychain).last().map(|(i, _)| i)
}
/// Returns the highest derivation index of each keychain that [`KeychainTxOutIndex`] has found
/// a [`TxOut`] with it's script pubkey.
pub fn last_used_indices(&self) -> BTreeMap<K, u32> {
self.keychain_to_descriptor_id
.iter()
.filter_map(|(keychain, _)| {
self.last_used_index(keychain.clone())
.map(|index| (keychain.clone(), index))
})
.collect()
}
/// Applies the `ChangeSet<K>` to the [`KeychainTxOutIndex<K>`]
pub fn apply_changeset(&mut self, changeset: ChangeSet) {
for (&desc_id, &index) in &changeset.last_revealed {
let v = self.last_revealed.entry(desc_id).or_default();
*v = index.max(*v);
self.replenish_inner_index_did(desc_id, self.lookahead);
}
}
}
#[derive(Clone, Debug, PartialEq)]
/// Error returned from [`KeychainTxOutIndex::insert_descriptor`]
pub enum InsertDescriptorError<K> {
/// The descriptor has already been assigned to a keychain so you can't assign it to another
DescriptorAlreadyAssigned {
/// The descriptor you have attempted to reassign
descriptor: Descriptor<DescriptorPublicKey>,
/// The keychain that the descriptor is already assigned to
existing_assignment: K,
},
/// The keychain is already assigned to a descriptor so you can't reassign it
KeychainAlreadyAssigned {
/// The keychain that you have attempted to reassign
keychain: K,
/// The descriptor that the keychain is already assigned to
existing_assignment: Descriptor<DescriptorPublicKey>,
},
}
impl<K: core::fmt::Debug> core::fmt::Display for InsertDescriptorError<K> {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
match self {
InsertDescriptorError::DescriptorAlreadyAssigned {
existing_assignment: existing,
descriptor,
} => {
write!(
f,
"attempt to re-assign descriptor {descriptor:?} already assigned to {existing:?}"
)
}
InsertDescriptorError::KeychainAlreadyAssigned {
existing_assignment: existing,
keychain,
} => {
write!(
f,
"attempt to re-assign keychain {keychain:?} already assigned to {existing:?}"
)
}
}
}
}
#[cfg(feature = "std")]
impl<K: core::fmt::Debug> std::error::Error for InsertDescriptorError<K> {}
/// Represents updates to the derivation index of a [`KeychainTxOutIndex`].
/// It maps each keychain `K` to a descriptor and its last revealed index.
///
/// It can be applied to [`KeychainTxOutIndex`] with [`apply_changeset`].
///
/// The `last_revealed` field is monotone in that [`merge`] will never decrease it.
/// `keychains_added` is *not* monotone, once it is set any attempt to change it is subject to the
/// same *one-to-one* keychain <-> descriptor mapping invariant as [`KeychainTxOutIndex`] itself.
///
/// [`KeychainTxOutIndex`]: crate::keychain_txout::KeychainTxOutIndex
/// [`apply_changeset`]: crate::keychain_txout::KeychainTxOutIndex::apply_changeset
/// [`merge`]: Self::merge
#[derive(Clone, Debug, Default, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
#[must_use]
pub struct ChangeSet {
/// Contains for each descriptor_id the last revealed index of derivation
pub last_revealed: BTreeMap<DescriptorId, u32>,
}
impl Merge for ChangeSet {
/// Merge another [`ChangeSet`] into self.
fn merge(&mut self, other: Self) {
// for `last_revealed`, entries of `other` will take precedence ONLY if it is greater than
// what was originally in `self`.
for (desc_id, index) in other.last_revealed {
use crate::collections::btree_map::Entry;
match self.last_revealed.entry(desc_id) {
Entry::Vacant(entry) => {
entry.insert(index);
}
Entry::Occupied(mut entry) => {
if *entry.get() < index {
entry.insert(index);
}
}
}
}
}
/// Returns whether the changeset are empty.
fn is_empty(&self) -> bool {
self.last_revealed.is_empty()
}
}
/// Trait to extend [`SyncRequestBuilder`].
pub trait SyncRequestBuilderExt<K> {
/// Add [`Script`](bitcoin::Script)s that are revealed by the `indexer` of the given `spk_range`
/// that will be synced against.
fn revealed_spks_from_indexer<R>(self, indexer: &KeychainTxOutIndex<K>, spk_range: R) -> Self
where
R: core::ops::RangeBounds<K>;
/// Add [`Script`](bitcoin::Script)s that are revealed by the `indexer` but currently unused.
fn unused_spks_from_indexer(self, indexer: &KeychainTxOutIndex<K>) -> Self;
}
impl<K: Clone + Ord + core::fmt::Debug> SyncRequestBuilderExt<K> for SyncRequestBuilder<(K, u32)> {
fn revealed_spks_from_indexer<R>(self, indexer: &KeychainTxOutIndex<K>, spk_range: R) -> Self
where
R: core::ops::RangeBounds<K>,
{
self.spks_with_indexes(indexer.revealed_spks(spk_range))
}
fn unused_spks_from_indexer(self, indexer: &KeychainTxOutIndex<K>) -> Self {
self.spks_with_indexes(indexer.unused_spks())
}
}
/// Trait to extend [`FullScanRequestBuilder`].
pub trait FullScanRequestBuilderExt<K> {
/// Add spk iterators for each keychain tracked in `indexer`.
fn spks_from_indexer(self, indexer: &KeychainTxOutIndex<K>) -> Self;
}
impl<K: Clone + Ord + core::fmt::Debug> FullScanRequestBuilderExt<K> for FullScanRequestBuilder<K> {
fn spks_from_indexer(mut self, indexer: &KeychainTxOutIndex<K>) -> Self {
for (keychain, spks) in indexer.all_unbounded_spk_iters() {
self = self.spks_for_keychain(keychain, spks);
}
self
}
}