1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
// Bitcoin Dev Kit
// Written in 2020 by Alekos Filini <alekos.filini@gmail.com>
//
// Copyright (c) 2020-2021 Bitcoin Dev Kit Developers
//
// This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
// or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
// You may not use this file except in accordance with one or both of these
// licenses.

use bitcoin::secp256k1::{All, Secp256k1};
use bitcoin::{absolute, relative, Script, Sequence};

use miniscript::{MiniscriptKey, Satisfier, ToPublicKey};

use rand_core::RngCore;

/// Trait to check if a value is below the dust limit.
/// We are performing dust value calculation for a given script public key using rust-bitcoin to
/// keep it compatible with network dust rate
// we implement this trait to make sure we don't mess up the comparison with off-by-one like a <
// instead of a <= etc.
pub trait IsDust {
    /// Check whether or not a value is below dust limit
    fn is_dust(&self, script: &Script) -> bool;
}

impl IsDust for u64 {
    fn is_dust(&self, script: &Script) -> bool {
        *self < script.minimal_non_dust().to_sat()
    }
}

pub struct After {
    pub current_height: Option<u32>,
    pub assume_height_reached: bool,
}

impl After {
    pub(crate) fn new(current_height: Option<u32>, assume_height_reached: bool) -> After {
        After {
            current_height,
            assume_height_reached,
        }
    }
}

pub(crate) fn check_nsequence_rbf(rbf: Sequence, csv: Sequence) -> bool {
    // The RBF value must enable relative timelocks
    if !rbf.is_relative_lock_time() {
        return false;
    }

    // Both values should be represented in the same unit (either time-based or
    // block-height based)
    if rbf.is_time_locked() != csv.is_time_locked() {
        return false;
    }

    // The value should be at least `csv`
    if rbf < csv {
        return false;
    }

    true
}

impl<Pk: MiniscriptKey + ToPublicKey> Satisfier<Pk> for After {
    fn check_after(&self, n: absolute::LockTime) -> bool {
        if let Some(current_height) = self.current_height {
            current_height >= n.to_consensus_u32()
        } else {
            self.assume_height_reached
        }
    }
}

pub struct Older {
    pub current_height: Option<u32>,
    pub create_height: Option<u32>,
    pub assume_height_reached: bool,
}

impl Older {
    pub(crate) fn new(
        current_height: Option<u32>,
        create_height: Option<u32>,
        assume_height_reached: bool,
    ) -> Older {
        Older {
            current_height,
            create_height,
            assume_height_reached,
        }
    }
}

impl<Pk: MiniscriptKey + ToPublicKey> Satisfier<Pk> for Older {
    fn check_older(&self, n: relative::LockTime) -> bool {
        if let Some(current_height) = self.current_height {
            // TODO: test >= / >
            current_height
                >= self
                    .create_height
                    .unwrap_or(0)
                    .checked_add(n.to_consensus_u32())
                    .expect("Overflowing addition")
        } else {
            self.assume_height_reached
        }
    }
}

// The Knuth shuffling algorithm based on the original [Fisher-Yates method](https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle)
pub(crate) fn shuffle_slice<T>(list: &mut [T], rng: &mut impl RngCore) {
    if list.is_empty() {
        return;
    }
    let mut current_index = list.len() - 1;
    while current_index > 0 {
        let random_index = rng.next_u32() as usize % (current_index + 1);
        list.swap(current_index, random_index);
        current_index -= 1;
    }
}

pub(crate) type SecpCtx = Secp256k1<All>;

#[cfg(test)]
mod test {
    // When nSequence is lower than this flag the timelock is interpreted as block-height-based,
    // otherwise it's time-based
    pub(crate) const SEQUENCE_LOCKTIME_TYPE_FLAG: u32 = 1 << 22;

    use super::{check_nsequence_rbf, shuffle_slice, IsDust};
    use crate::bitcoin::{Address, Network, Sequence};
    use alloc::vec::Vec;
    use core::str::FromStr;
    use rand::{rngs::StdRng, thread_rng, SeedableRng};

    #[test]
    fn test_is_dust() {
        let script_p2pkh = Address::from_str("1GNgwA8JfG7Kc8akJ8opdNWJUihqUztfPe")
            .unwrap()
            .require_network(Network::Bitcoin)
            .unwrap()
            .script_pubkey();
        assert!(script_p2pkh.is_p2pkh());
        assert!(545.is_dust(&script_p2pkh));
        assert!(!546.is_dust(&script_p2pkh));

        let script_p2wpkh = Address::from_str("bc1qxlh2mnc0yqwas76gqq665qkggee5m98t8yskd8")
            .unwrap()
            .require_network(Network::Bitcoin)
            .unwrap()
            .script_pubkey();
        assert!(script_p2wpkh.is_p2wpkh());
        assert!(293.is_dust(&script_p2wpkh));
        assert!(!294.is_dust(&script_p2wpkh));
    }

    #[test]
    fn test_check_nsequence_rbf_msb_set() {
        let result = check_nsequence_rbf(Sequence(0x80000000), Sequence(5000));
        assert!(!result);
    }

    #[test]
    fn test_check_nsequence_rbf_lt_csv() {
        let result = check_nsequence_rbf(Sequence(4000), Sequence(5000));
        assert!(!result);
    }

    #[test]
    fn test_check_nsequence_rbf_different_unit() {
        let result =
            check_nsequence_rbf(Sequence(SEQUENCE_LOCKTIME_TYPE_FLAG + 5000), Sequence(5000));
        assert!(!result);
    }

    #[test]
    fn test_check_nsequence_rbf_mask() {
        let result = check_nsequence_rbf(Sequence(0x3f + 10_000), Sequence(5000));
        assert!(result);
    }

    #[test]
    fn test_check_nsequence_rbf_same_unit_blocks() {
        let result = check_nsequence_rbf(Sequence(10_000), Sequence(5000));
        assert!(result);
    }

    #[test]
    fn test_check_nsequence_rbf_same_unit_time() {
        let result = check_nsequence_rbf(
            Sequence(SEQUENCE_LOCKTIME_TYPE_FLAG + 10_000),
            Sequence(SEQUENCE_LOCKTIME_TYPE_FLAG + 5000),
        );
        assert!(result);
    }

    #[test]
    #[cfg(feature = "std")]
    fn test_shuffle_slice_empty_vec() {
        let mut test: Vec<u8> = vec![];
        shuffle_slice(&mut test, &mut thread_rng());
    }

    #[test]
    #[cfg(feature = "std")]
    fn test_shuffle_slice_single_vec() {
        let mut test: Vec<u8> = vec![0];
        shuffle_slice(&mut test, &mut thread_rng());
    }

    #[test]
    fn test_shuffle_slice_duple_vec() {
        let seed = [0; 32];
        let mut rng: StdRng = SeedableRng::from_seed(seed);
        let mut test: Vec<u8> = vec![0, 1];
        shuffle_slice(&mut test, &mut rng);
        assert_eq!(test, &[0, 1]);
        let seed = [6; 32];
        let mut rng: StdRng = SeedableRng::from_seed(seed);
        let mut test: Vec<u8> = vec![0, 1];
        shuffle_slice(&mut test, &mut rng);
        assert_eq!(test, &[1, 0]);
    }

    #[test]
    fn test_shuffle_slice_multi_vec() {
        let seed = [0; 32];
        let mut rng: StdRng = SeedableRng::from_seed(seed);
        let mut test: Vec<u8> = vec![0, 1, 2, 4, 5];
        shuffle_slice(&mut test, &mut rng);
        assert_eq!(test, &[2, 1, 0, 4, 5]);
        let seed = [25; 32];
        let mut rng: StdRng = SeedableRng::from_seed(seed);
        let mut test: Vec<u8> = vec![0, 1, 2, 4, 5];
        shuffle_slice(&mut test, &mut rng);
        assert_eq!(test, &[0, 4, 1, 2, 5]);
    }
}