1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
//! Module for structures that store and traverse transactions.
//!
//! [`TxGraph`] contains transactions and indexes them so you can easily traverse the graph of
//! those transactions. `TxGraph` is *monotone* in that you can always insert a transaction -- it
//! does not care whether that transaction is in the current best chain or whether it conflicts with
//! any of the existing transactions or what order you insert the transactions. This means that you
//! can always combine two [`TxGraph`]s together, without resulting in inconsistencies. Furthermore,
//! there is currently no way to delete a transaction.
//!
//! Transactions can be either whole or partial (i.e., transactions for which we only know some
//! outputs, which we usually call "floating outputs"; these are usually inserted using the
//! [`insert_txout`] method.).
//!
//! The graph contains transactions in the form of [`TxNode`]s. Each node contains the txid, the
//! transaction (whole or partial), the blocks that it is anchored to (see the [`Anchor`]
//! documentation for more details), and the timestamp of the last time we saw the transaction as
//! unconfirmed.
//!
//! Conflicting transactions are allowed to coexist within a [`TxGraph`]. This is useful for
//! identifying and traversing conflicts and descendants of a given transaction. Some [`TxGraph`]
//! methods only consider transactions that are "canonical" (i.e., in the best chain or in mempool).
//! We decide which transactions are canonical based on the transaction's anchors and the
//! `last_seen` (as unconfirmed) timestamp; see the [`try_get_chain_position`] documentation for
//! more details.
//!
//! The [`ChangeSet`] reports changes made to a [`TxGraph`]; it can be used to either save to
//! persistent storage, or to be applied to another [`TxGraph`].
//!
//! Lastly, you can use [`TxAncestors`]/[`TxDescendants`] to traverse ancestors and descendants of
//! a given transaction, respectively.
//!
//! # Applying changes
//!
//! Methods that change the state of [`TxGraph`] will return [`ChangeSet`]s.
//! [`ChangeSet`]s can be applied back to a [`TxGraph`] or be used to inform persistent storage
//! of the changes to [`TxGraph`].
//!
//! # Generics
//!
//! Anchors are represented as generics within `TxGraph<A>`. To make use of all functionality of the
//! `TxGraph`, anchors (`A`) should implement [`Anchor`].
//!
//! Anchors are made generic so that different types of data can be stored with how a transaction is
//! *anchored* to a given block. An example of this is storing a merkle proof of the transaction to
//! the confirmation block - this can be done with a custom [`Anchor`] type. The minimal [`Anchor`]
//! type would just be a [`BlockId`] which just represents the height and hash of the block which
//! the transaction is contained in. Note that a transaction can be contained in multiple
//! conflicting blocks (by nature of the Bitcoin network).
//!
//! ```
//! # use bdk_chain::BlockId;
//! # use bdk_chain::tx_graph::TxGraph;
//! # use bdk_chain::example_utils::*;
//! # use bitcoin::Transaction;
//! # let tx_a = tx_from_hex(RAW_TX_1);
//! let mut tx_graph: TxGraph = TxGraph::default();
//!
//! // insert a transaction
//! let changeset = tx_graph.insert_tx(tx_a);
//!
//! // We can restore the state of the `tx_graph` by applying all
//! // the changesets obtained by mutating the original (the order doesn't matter).
//! let mut restored_tx_graph: TxGraph = TxGraph::default();
//! restored_tx_graph.apply_changeset(changeset);
//!
//! assert_eq!(tx_graph, restored_tx_graph);
//! ```
//!
//! A [`TxGraph`] can also be updated with another [`TxGraph`] which merges them together.
//!
//! ```
//! # use bdk_chain::{Merge, BlockId};
//! # use bdk_chain::tx_graph::{self, TxGraph};
//! # use bdk_chain::example_utils::*;
//! # use bitcoin::Transaction;
//! # use std::sync::Arc;
//! # let tx_a = tx_from_hex(RAW_TX_1);
//! # let tx_b = tx_from_hex(RAW_TX_2);
//! let mut graph: TxGraph = TxGraph::default();
//!
//! let mut update = tx_graph::TxUpdate::default();
//! update.txs.push(Arc::new(tx_a));
//! update.txs.push(Arc::new(tx_b));
//!
//! // apply the update graph
//! let changeset = graph.apply_update(update.clone());
//!
//! // if we apply it again, the resulting changeset will be empty
//! let changeset = graph.apply_update(update);
//! assert!(changeset.is_empty());
//! ```
//! [`try_get_chain_position`]: TxGraph::try_get_chain_position
//! [`insert_txout`]: TxGraph::insert_txout
use crate::collections::*;
use crate::BlockId;
use crate::{Anchor, Balance, ChainOracle, ChainPosition, FullTxOut, Merge};
use alloc::collections::vec_deque::VecDeque;
use alloc::sync::Arc;
use alloc::vec::Vec;
pub use bdk_core::TxUpdate;
use bitcoin::{Amount, OutPoint, ScriptBuf, SignedAmount, Transaction, TxOut, Txid};
use core::fmt::{self, Formatter};
use core::{
convert::Infallible,
ops::{Deref, RangeInclusive},
};
impl<A> From<TxGraph<A>> for TxUpdate<A> {
fn from(graph: TxGraph<A>) -> Self {
Self {
txs: graph.full_txs().map(|tx_node| tx_node.tx).collect(),
txouts: graph
.floating_txouts()
.map(|(op, txo)| (op, txo.clone()))
.collect(),
anchors: graph.anchors,
seen_ats: graph.last_seen.into_iter().collect(),
}
}
}
impl<A: Ord + Clone> From<TxUpdate<A>> for TxGraph<A> {
fn from(update: TxUpdate<A>) -> Self {
let mut graph = TxGraph::<A>::default();
let _ = graph.apply_update_at(update, None);
graph
}
}
/// A graph of transactions and spends.
///
/// See the [module-level documentation] for more.
///
/// [module-level documentation]: crate::tx_graph
#[derive(Clone, Debug, PartialEq)]
pub struct TxGraph<A = ()> {
// all transactions that the graph is aware of in format: `(tx_node, tx_anchors)`
txs: HashMap<Txid, (TxNodeInternal, BTreeSet<A>)>,
spends: BTreeMap<OutPoint, HashSet<Txid>>,
anchors: BTreeSet<(A, Txid)>,
last_seen: HashMap<Txid, u64>,
// This atrocity exists so that `TxGraph::outspends()` can return a reference.
// FIXME: This can be removed once `HashSet::new` is a const fn.
empty_outspends: HashSet<Txid>,
}
impl<A> Default for TxGraph<A> {
fn default() -> Self {
Self {
txs: Default::default(),
spends: Default::default(),
anchors: Default::default(),
last_seen: Default::default(),
empty_outspends: Default::default(),
}
}
}
/// A transaction node in the [`TxGraph`].
#[derive(Clone, Debug, PartialEq, Eq, PartialOrd, Ord)]
pub struct TxNode<'a, T, A> {
/// Txid of the transaction.
pub txid: Txid,
/// A partial or full representation of the transaction.
pub tx: T,
/// The blocks that the transaction is "anchored" in.
pub anchors: &'a BTreeSet<A>,
/// The last-seen unix timestamp of the transaction as unconfirmed.
pub last_seen_unconfirmed: Option<u64>,
}
impl<'a, T, A> Deref for TxNode<'a, T, A> {
type Target = T;
fn deref(&self) -> &Self::Target {
&self.tx
}
}
/// Internal representation of a transaction node of a [`TxGraph`].
///
/// This can either be a whole transaction, or a partial transaction (where we only have select
/// outputs).
#[derive(Clone, Debug, PartialEq)]
enum TxNodeInternal {
Whole(Arc<Transaction>),
Partial(BTreeMap<u32, TxOut>),
}
impl Default for TxNodeInternal {
fn default() -> Self {
Self::Partial(BTreeMap::new())
}
}
/// A transaction that is included in the chain, or is still in mempool.
#[derive(Clone, Debug, PartialEq, Eq, PartialOrd, Ord)]
pub struct CanonicalTx<'a, T, A> {
/// How the transaction is observed as (confirmed or unconfirmed).
pub chain_position: ChainPosition<&'a A>,
/// The transaction node (as part of the graph).
pub tx_node: TxNode<'a, T, A>,
}
/// Errors returned by `TxGraph::calculate_fee`.
#[derive(Debug, PartialEq, Eq)]
pub enum CalculateFeeError {
/// Missing `TxOut` for one or more of the inputs of the tx
MissingTxOut(Vec<OutPoint>),
/// When the transaction is invalid according to the graph it has a negative fee
NegativeFee(SignedAmount),
}
impl fmt::Display for CalculateFeeError {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
match self {
CalculateFeeError::MissingTxOut(outpoints) => write!(
f,
"missing `TxOut` for one or more of the inputs of the tx: {:?}",
outpoints
),
CalculateFeeError::NegativeFee(fee) => write!(
f,
"transaction is invalid according to the graph and has negative fee: {}",
fee.display_dynamic()
),
}
}
}
#[cfg(feature = "std")]
impl std::error::Error for CalculateFeeError {}
impl<A> TxGraph<A> {
/// Iterate over all tx outputs known by [`TxGraph`].
///
/// This includes txouts of both full transactions as well as floating transactions.
pub fn all_txouts(&self) -> impl Iterator<Item = (OutPoint, &TxOut)> {
self.txs.iter().flat_map(|(txid, (tx, _))| match tx {
TxNodeInternal::Whole(tx) => tx
.as_ref()
.output
.iter()
.enumerate()
.map(|(vout, txout)| (OutPoint::new(*txid, vout as _), txout))
.collect::<Vec<_>>(),
TxNodeInternal::Partial(txouts) => txouts
.iter()
.map(|(vout, txout)| (OutPoint::new(*txid, *vout as _), txout))
.collect::<Vec<_>>(),
})
}
/// Iterate over floating txouts known by [`TxGraph`].
///
/// Floating txouts are txouts that do not have the residing full transaction contained in the
/// graph.
pub fn floating_txouts(&self) -> impl Iterator<Item = (OutPoint, &TxOut)> {
self.txs
.iter()
.filter_map(|(txid, (tx_node, _))| match tx_node {
TxNodeInternal::Whole(_) => None,
TxNodeInternal::Partial(txouts) => Some(
txouts
.iter()
.map(|(&vout, txout)| (OutPoint::new(*txid, vout), txout)),
),
})
.flatten()
}
/// Iterate over all full transactions in the graph.
pub fn full_txs(&self) -> impl Iterator<Item = TxNode<'_, Arc<Transaction>, A>> {
self.txs
.iter()
.filter_map(|(&txid, (tx, anchors))| match tx {
TxNodeInternal::Whole(tx) => Some(TxNode {
txid,
tx: tx.clone(),
anchors,
last_seen_unconfirmed: self.last_seen.get(&txid).copied(),
}),
TxNodeInternal::Partial(_) => None,
})
}
/// Iterate over graph transactions with no anchors or last-seen.
pub fn txs_with_no_anchor_or_last_seen(
&self,
) -> impl Iterator<Item = TxNode<'_, Arc<Transaction>, A>> {
self.full_txs().filter_map(|tx| {
if tx.anchors.is_empty() && tx.last_seen_unconfirmed.is_none() {
Some(tx)
} else {
None
}
})
}
/// Get a transaction by txid. This only returns `Some` for full transactions.
///
/// Refer to [`get_txout`] for getting a specific [`TxOut`].
///
/// [`get_txout`]: Self::get_txout
pub fn get_tx(&self, txid: Txid) -> Option<Arc<Transaction>> {
self.get_tx_node(txid).map(|n| n.tx)
}
/// Get a transaction node by txid. This only returns `Some` for full transactions.
pub fn get_tx_node(&self, txid: Txid) -> Option<TxNode<'_, Arc<Transaction>, A>> {
match &self.txs.get(&txid)? {
(TxNodeInternal::Whole(tx), anchors) => Some(TxNode {
txid,
tx: tx.clone(),
anchors,
last_seen_unconfirmed: self.last_seen.get(&txid).copied(),
}),
_ => None,
}
}
/// Obtains a single tx output (if any) at the specified outpoint.
pub fn get_txout(&self, outpoint: OutPoint) -> Option<&TxOut> {
match &self.txs.get(&outpoint.txid)?.0 {
TxNodeInternal::Whole(tx) => tx.as_ref().output.get(outpoint.vout as usize),
TxNodeInternal::Partial(txouts) => txouts.get(&outpoint.vout),
}
}
/// Returns known outputs of a given `txid`.
///
/// Returns a [`BTreeMap`] of vout to output of the provided `txid`.
pub fn tx_outputs(&self, txid: Txid) -> Option<BTreeMap<u32, &TxOut>> {
Some(match &self.txs.get(&txid)?.0 {
TxNodeInternal::Whole(tx) => tx
.as_ref()
.output
.iter()
.enumerate()
.map(|(vout, txout)| (vout as u32, txout))
.collect::<BTreeMap<_, _>>(),
TxNodeInternal::Partial(txouts) => txouts
.iter()
.map(|(vout, txout)| (*vout, txout))
.collect::<BTreeMap<_, _>>(),
})
}
/// Calculates the fee of a given transaction. Returns [`Amount::ZERO`] if `tx` is a coinbase transaction.
/// Returns `OK(_)` if we have all the [`TxOut`]s being spent by `tx` in the graph (either as
/// the full transactions or individual txouts).
///
/// To calculate the fee for a [`Transaction`] that depends on foreign [`TxOut`] values you must
/// first manually insert the foreign TxOuts into the tx graph using the [`insert_txout`] function.
/// Only insert TxOuts you trust the values for!
///
/// Note `tx` does not have to be in the graph for this to work.
///
/// [`insert_txout`]: Self::insert_txout
pub fn calculate_fee(&self, tx: &Transaction) -> Result<Amount, CalculateFeeError> {
if tx.is_coinbase() {
return Ok(Amount::ZERO);
}
let (inputs_sum, missing_outputs) = tx.input.iter().fold(
(SignedAmount::ZERO, Vec::new()),
|(mut sum, mut missing_outpoints), txin| match self.get_txout(txin.previous_output) {
None => {
missing_outpoints.push(txin.previous_output);
(sum, missing_outpoints)
}
Some(txout) => {
sum += txout.value.to_signed().expect("valid `SignedAmount`");
(sum, missing_outpoints)
}
},
);
if !missing_outputs.is_empty() {
return Err(CalculateFeeError::MissingTxOut(missing_outputs));
}
let outputs_sum = tx
.output
.iter()
.map(|txout| txout.value.to_signed().expect("valid `SignedAmount`"))
.sum::<SignedAmount>();
let fee = inputs_sum - outputs_sum;
fee.to_unsigned()
.map_err(|_| CalculateFeeError::NegativeFee(fee))
}
/// The transactions spending from this output.
///
/// [`TxGraph`] allows conflicting transactions within the graph. Obviously the transactions in
/// the returned set will never be in the same active-chain.
pub fn outspends(&self, outpoint: OutPoint) -> &HashSet<Txid> {
self.spends.get(&outpoint).unwrap_or(&self.empty_outspends)
}
/// Iterates over the transactions spending from `txid`.
///
/// The iterator item is a union of `(vout, txid-set)` where:
///
/// - `vout` is the provided `txid`'s outpoint that is being spent
/// - `txid-set` is the set of txids spending the `vout`.
pub fn tx_spends(
&self,
txid: Txid,
) -> impl DoubleEndedIterator<Item = (u32, &HashSet<Txid>)> + '_ {
let start = OutPoint::new(txid, 0);
let end = OutPoint::new(txid, u32::MAX);
self.spends
.range(start..=end)
.map(|(outpoint, spends)| (outpoint.vout, spends))
}
}
impl<A: Clone + Ord> TxGraph<A> {
/// Creates an iterator that filters and maps ancestor transactions.
///
/// The iterator starts with the ancestors of the supplied `tx` (ancestor transactions of `tx`
/// are transactions spent by `tx`). The supplied transaction is excluded from the iterator.
///
/// The supplied closure takes in two inputs `(depth, ancestor_tx)`:
///
/// * `depth` is the distance between the starting `Transaction` and the `ancestor_tx`. I.e., if
/// the `Transaction` is spending an output of the `ancestor_tx` then `depth` will be 1.
/// * `ancestor_tx` is the `Transaction`'s ancestor which we are considering to walk.
///
/// The supplied closure returns an `Option<T>`, allowing the caller to map each `Transaction`
/// it visits and decide whether to visit ancestors.
pub fn walk_ancestors<'g, T, F, O>(&'g self, tx: T, walk_map: F) -> TxAncestors<'g, A, F>
where
T: Into<Arc<Transaction>>,
F: FnMut(usize, Arc<Transaction>) -> Option<O> + 'g,
{
TxAncestors::new_exclude_root(self, tx, walk_map)
}
/// Creates an iterator that filters and maps descendants from the starting `txid`.
///
/// The supplied closure takes in two inputs `(depth, descendant_txid)`:
///
/// * `depth` is the distance between the starting `txid` and the `descendant_txid`. I.e., if the
/// descendant is spending an output of the starting `txid` then `depth` will be 1.
/// * `descendant_txid` is the descendant's txid which we are considering to walk.
///
/// The supplied closure returns an `Option<T>`, allowing the caller to map each node it visits
/// and decide whether to visit descendants.
pub fn walk_descendants<'g, F, O>(&'g self, txid: Txid, walk_map: F) -> TxDescendants<A, F>
where
F: FnMut(usize, Txid) -> Option<O> + 'g,
{
TxDescendants::new_exclude_root(self, txid, walk_map)
}
}
impl<A> TxGraph<A> {
/// Creates an iterator that both filters and maps conflicting transactions (this includes
/// descendants of directly-conflicting transactions, which are also considered conflicts).
///
/// Refer to [`Self::walk_descendants`] for `walk_map` usage.
pub fn walk_conflicts<'g, F, O>(
&'g self,
tx: &'g Transaction,
walk_map: F,
) -> TxDescendants<A, F>
where
F: FnMut(usize, Txid) -> Option<O> + 'g,
{
let txids = self.direct_conflicts(tx).map(|(_, txid)| txid);
TxDescendants::from_multiple_include_root(self, txids, walk_map)
}
/// Given a transaction, return an iterator of txids that directly conflict with the given
/// transaction's inputs (spends). The conflicting txids are returned with the given
/// transaction's vin (in which it conflicts).
///
/// Note that this only returns directly conflicting txids and won't include:
/// - descendants of conflicting transactions (which are technically also conflicting)
/// - transactions conflicting with the given transaction's ancestors
pub fn direct_conflicts<'g>(
&'g self,
tx: &'g Transaction,
) -> impl Iterator<Item = (usize, Txid)> + '_ {
let txid = tx.compute_txid();
tx.input
.iter()
.enumerate()
.filter_map(move |(vin, txin)| self.spends.get(&txin.previous_output).zip(Some(vin)))
.flat_map(|(spends, vin)| core::iter::repeat(vin).zip(spends.iter().cloned()))
.filter(move |(_, conflicting_txid)| *conflicting_txid != txid)
}
/// Get all transaction anchors known by [`TxGraph`].
pub fn all_anchors(&self) -> &BTreeSet<(A, Txid)> {
&self.anchors
}
/// Whether the graph has any transactions or outputs in it.
pub fn is_empty(&self) -> bool {
self.txs.is_empty()
}
}
impl<A: Clone + Ord> TxGraph<A> {
/// Transform the [`TxGraph`] to have [`Anchor`]s of another type.
///
/// This takes in a closure of signature `FnMut(A) -> A2` which is called for each [`Anchor`] to
/// transform it.
pub fn map_anchors<A2: Clone + Ord, F>(self, f: F) -> TxGraph<A2>
where
F: FnMut(A) -> A2,
{
let mut new_graph = TxGraph::<A2>::default();
new_graph.apply_changeset(self.initial_changeset().map_anchors(f));
new_graph
}
/// Construct a new [`TxGraph`] from a list of transactions.
pub fn new(txs: impl IntoIterator<Item = Transaction>) -> Self {
let mut new = Self::default();
for tx in txs.into_iter() {
let _ = new.insert_tx(tx);
}
new
}
/// Inserts the given [`TxOut`] at [`OutPoint`].
///
/// Inserting floating txouts are useful for determining fee/feerate of transactions we care
/// about.
///
/// The [`ChangeSet`] result will be empty if the `outpoint` (or a full transaction containing
/// the `outpoint`) already existed in `self`.
///
/// [`apply_changeset`]: Self::apply_changeset
pub fn insert_txout(&mut self, outpoint: OutPoint, txout: TxOut) -> ChangeSet<A> {
let mut changeset = ChangeSet::<A>::default();
let (tx_node, _) = self.txs.entry(outpoint.txid).or_default();
match tx_node {
TxNodeInternal::Whole(_) => {
// ignore this txout we have the full one already.
// NOTE: You might think putting a debug_assert! here to check the output being
// replaced was actually correct is a good idea but the tests have already been
// written assuming this never panics.
}
TxNodeInternal::Partial(partial_tx) => {
match partial_tx.insert(outpoint.vout, txout.clone()) {
Some(old_txout) => {
debug_assert_eq!(
txout, old_txout,
"txout of the same outpoint should never change"
);
}
None => {
changeset.txouts.insert(outpoint, txout);
}
}
}
}
changeset
}
/// Inserts the given transaction into [`TxGraph`].
///
/// The [`ChangeSet`] returned will be empty if `tx` already exists.
pub fn insert_tx<T: Into<Arc<Transaction>>>(&mut self, tx: T) -> ChangeSet<A> {
let tx: Arc<Transaction> = tx.into();
let txid = tx.compute_txid();
let mut changeset = ChangeSet::<A>::default();
let (tx_node, _) = self.txs.entry(txid).or_default();
match tx_node {
TxNodeInternal::Whole(existing_tx) => {
debug_assert_eq!(
existing_tx.as_ref(),
tx.as_ref(),
"tx of same txid should never change"
);
}
partial_tx => {
for txin in &tx.input {
// this means the tx is coinbase so there is no previous output
if txin.previous_output.is_null() {
continue;
}
self.spends
.entry(txin.previous_output)
.or_default()
.insert(txid);
}
*partial_tx = TxNodeInternal::Whole(tx.clone());
changeset.txs.insert(tx);
}
}
changeset
}
/// Batch insert unconfirmed transactions.
///
/// Items of `txs` are tuples containing the transaction and a *last seen* timestamp. The
/// *last seen* communicates when the transaction is last seen in mempool which is used for
/// conflict-resolution (refer to [`TxGraph::insert_seen_at`] for details).
pub fn batch_insert_unconfirmed<T: Into<Arc<Transaction>>>(
&mut self,
txs: impl IntoIterator<Item = (T, u64)>,
) -> ChangeSet<A> {
let mut changeset = ChangeSet::<A>::default();
for (tx, seen_at) in txs {
let tx: Arc<Transaction> = tx.into();
changeset.merge(self.insert_seen_at(tx.compute_txid(), seen_at));
changeset.merge(self.insert_tx(tx));
}
changeset
}
/// Inserts the given `anchor` into [`TxGraph`].
///
/// The [`ChangeSet`] returned will be empty if graph already knows that `txid` exists in
/// `anchor`.
pub fn insert_anchor(&mut self, txid: Txid, anchor: A) -> ChangeSet<A> {
let mut changeset = ChangeSet::<A>::default();
if self.anchors.insert((anchor.clone(), txid)) {
let (_tx_node, anchors) = self.txs.entry(txid).or_default();
let _inserted = anchors.insert(anchor.clone());
debug_assert!(
_inserted,
"anchors in `.anchors` and `.txs` should be consistent"
);
changeset.anchors.insert((anchor, txid));
}
changeset
}
/// Inserts the given `seen_at` for `txid` into [`TxGraph`].
///
/// Note that [`TxGraph`] only keeps track of the latest `seen_at`.
pub fn insert_seen_at(&mut self, txid: Txid, seen_at: u64) -> ChangeSet<A> {
let mut changeset = ChangeSet::<A>::default();
let last_seen = self.last_seen.entry(txid).or_default();
if seen_at > *last_seen {
*last_seen = seen_at;
changeset.last_seen.insert(txid, seen_at);
}
changeset
}
/// Extends this graph with the given `update`.
///
/// The returned [`ChangeSet`] is the set difference between `update` and `self` (transactions that
/// exist in `update` but not in `self`).
#[cfg(feature = "std")]
#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
pub fn apply_update(&mut self, update: TxUpdate<A>) -> ChangeSet<A> {
use std::time::*;
let now = SystemTime::now()
.duration_since(UNIX_EPOCH)
.expect("current time must be greater than epoch anchor");
self.apply_update_at(update, Some(now.as_secs()))
}
/// Extends this graph with the given `update` alongside an optional `seen_at` timestamp.
///
/// `seen_at` represents when the update is seen (in unix seconds). It is used to determine the
/// `last_seen`s for all transactions in the update which have no corresponding anchor(s). The
/// `last_seen` value is used internally to determine precedence of conflicting unconfirmed
/// transactions (where the transaction with the lower `last_seen` value is omitted from the
/// canonical history).
///
/// Not setting a `seen_at` value means unconfirmed transactions introduced by this update will
/// not be part of the canonical history of transactions.
///
/// Use [`apply_update`](TxGraph::apply_update) to have the `seen_at` value automatically set
/// to the current time.
pub fn apply_update_at(&mut self, update: TxUpdate<A>, seen_at: Option<u64>) -> ChangeSet<A> {
let mut changeset = ChangeSet::<A>::default();
let mut unanchored_txs = HashSet::<Txid>::new();
for tx in update.txs {
if unanchored_txs.insert(tx.compute_txid()) {
changeset.merge(self.insert_tx(tx));
}
}
for (outpoint, txout) in update.txouts {
changeset.merge(self.insert_txout(outpoint, txout));
}
for (anchor, txid) in update.anchors {
unanchored_txs.remove(&txid);
changeset.merge(self.insert_anchor(txid, anchor));
}
for (txid, seen_at) in update.seen_ats {
changeset.merge(self.insert_seen_at(txid, seen_at));
}
if let Some(seen_at) = seen_at {
for txid in unanchored_txs {
changeset.merge(self.insert_seen_at(txid, seen_at));
}
}
changeset
}
/// Determines the [`ChangeSet`] between `self` and an empty [`TxGraph`].
pub fn initial_changeset(&self) -> ChangeSet<A> {
ChangeSet {
txs: self.full_txs().map(|tx_node| tx_node.tx).collect(),
txouts: self
.floating_txouts()
.map(|(op, txout)| (op, txout.clone()))
.collect(),
anchors: self.anchors.clone(),
last_seen: self.last_seen.iter().map(|(&k, &v)| (k, v)).collect(),
}
}
/// Applies [`ChangeSet`] to [`TxGraph`].
pub fn apply_changeset(&mut self, changeset: ChangeSet<A>) {
for tx in changeset.txs {
let _ = self.insert_tx(tx);
}
for (outpoint, txout) in changeset.txouts {
let _ = self.insert_txout(outpoint, txout);
}
for (anchor, txid) in changeset.anchors {
let _ = self.insert_anchor(txid, anchor);
}
for (txid, seen_at) in changeset.last_seen {
let _ = self.insert_seen_at(txid, seen_at);
}
}
}
impl<A: Anchor> TxGraph<A> {
/// Get the position of the transaction in `chain` with tip `chain_tip`.
///
/// Chain data is fetched from `chain`, a [`ChainOracle`] implementation.
///
/// This method returns `Ok(None)` if the transaction is not found in the chain, and no longer
/// belongs in the mempool. The following factors are used to approximate whether an
/// unconfirmed transaction exists in the mempool (not evicted):
///
/// 1. Unconfirmed transactions that conflict with confirmed transactions are evicted.
/// 2. Unconfirmed transactions that spend from transactions that are evicted, are also
/// evicted.
/// 3. Given two conflicting unconfirmed transactions, the transaction with the lower
/// `last_seen_unconfirmed` parameter is evicted. A transaction's `last_seen_unconfirmed`
/// parameter is the max of all it's descendants' `last_seen_unconfirmed` parameters. If the
/// final `last_seen_unconfirmed`s are the same, the transaction with the lower `txid` (by
/// lexicographical order) is evicted.
///
/// # Error
///
/// An error will occur if the [`ChainOracle`] implementation (`chain`) fails. If the
/// [`ChainOracle`] is infallible, [`get_chain_position`] can be used instead.
///
/// [`get_chain_position`]: Self::get_chain_position
pub fn try_get_chain_position<C: ChainOracle>(
&self,
chain: &C,
chain_tip: BlockId,
txid: Txid,
) -> Result<Option<ChainPosition<&A>>, C::Error> {
let (tx_node, anchors) = match self.txs.get(&txid) {
Some(v) => v,
None => return Ok(None),
};
for anchor in anchors {
match chain.is_block_in_chain(anchor.anchor_block(), chain_tip)? {
Some(true) => return Ok(Some(ChainPosition::Confirmed(anchor))),
_ => continue,
}
}
// If no anchors are in best chain and we don't have a last_seen, we can return
// early because by definition the tx doesn't have a chain position.
let last_seen = match self.last_seen.get(&txid) {
Some(t) => *t,
None => return Ok(None),
};
// The tx is not anchored to a block in the best chain, which means that it
// might be in mempool, or it might have been dropped already.
// Let's check conflicts to find out!
let tx = match tx_node {
TxNodeInternal::Whole(tx) => {
// A coinbase tx that is not anchored in the best chain cannot be unconfirmed and
// should always be filtered out.
if tx.is_coinbase() {
return Ok(None);
}
tx.clone()
}
TxNodeInternal::Partial(_) => {
// Partial transactions (outputs only) cannot have conflicts.
return Ok(None);
}
};
// We want to retrieve all the transactions that conflict with us, plus all the
// transactions that conflict with our unconfirmed ancestors, since they conflict with us
// as well.
// We only traverse unconfirmed ancestors since conflicts of confirmed transactions
// cannot be in the best chain.
// First of all, we retrieve all our ancestors. Since we're using `new_include_root`, the
// resulting array will also include `tx`
let unconfirmed_ancestor_txs =
TxAncestors::new_include_root(self, tx.clone(), |_, ancestor_tx: Arc<Transaction>| {
let tx_node = self.get_tx_node(ancestor_tx.as_ref().compute_txid())?;
// We're filtering the ancestors to keep only the unconfirmed ones (= no anchors in
// the best chain)
for block in tx_node.anchors {
match chain.is_block_in_chain(block.anchor_block(), chain_tip) {
Ok(Some(true)) => return None,
Err(e) => return Some(Err(e)),
_ => continue,
}
}
Some(Ok(tx_node))
})
.collect::<Result<Vec<_>, C::Error>>()?;
// We determine our tx's last seen, which is the max between our last seen,
// and our unconf descendants' last seen.
let unconfirmed_descendants_txs = TxDescendants::new_include_root(
self,
tx.as_ref().compute_txid(),
|_, descendant_txid: Txid| {
let tx_node = self.get_tx_node(descendant_txid)?;
// We're filtering the ancestors to keep only the unconfirmed ones (= no anchors in
// the best chain)
for block in tx_node.anchors {
match chain.is_block_in_chain(block.anchor_block(), chain_tip) {
Ok(Some(true)) => return None,
Err(e) => return Some(Err(e)),
_ => continue,
}
}
Some(Ok(tx_node))
},
)
.collect::<Result<Vec<_>, C::Error>>()?;
let tx_last_seen = unconfirmed_descendants_txs
.iter()
.max_by_key(|tx| tx.last_seen_unconfirmed)
.map(|tx| tx.last_seen_unconfirmed)
.expect("descendants always includes at least one transaction (the root tx");
// Now we traverse our ancestors and consider all their conflicts
for tx_node in unconfirmed_ancestor_txs {
// We retrieve all the transactions conflicting with this specific ancestor
let conflicting_txs =
self.walk_conflicts(tx_node.tx.as_ref(), |_, txid| self.get_tx_node(txid));
// If a conflicting tx is in the best chain, or has `last_seen` higher than this ancestor, then
// this tx cannot exist in the best chain
for conflicting_tx in conflicting_txs {
for block in conflicting_tx.anchors {
if chain.is_block_in_chain(block.anchor_block(), chain_tip)? == Some(true) {
return Ok(None);
}
}
if conflicting_tx.last_seen_unconfirmed > tx_last_seen {
return Ok(None);
}
if conflicting_tx.last_seen_unconfirmed == Some(last_seen)
&& conflicting_tx.as_ref().compute_txid() > tx.as_ref().compute_txid()
{
// Conflicting tx has priority if txid of conflicting tx > txid of original tx
return Ok(None);
}
}
}
Ok(Some(ChainPosition::Unconfirmed(last_seen)))
}
/// Get the position of the transaction in `chain` with tip `chain_tip`.
///
/// This is the infallible version of [`try_get_chain_position`].
///
/// [`try_get_chain_position`]: Self::try_get_chain_position
pub fn get_chain_position<C: ChainOracle<Error = Infallible>>(
&self,
chain: &C,
chain_tip: BlockId,
txid: Txid,
) -> Option<ChainPosition<&A>> {
self.try_get_chain_position(chain, chain_tip, txid)
.expect("error is infallible")
}
/// Get the txid of the spending transaction and where the spending transaction is observed in
/// the `chain` of `chain_tip`.
///
/// If no in-chain transaction spends `outpoint`, `None` will be returned.
///
/// # Error
///
/// An error will occur only if the [`ChainOracle`] implementation (`chain`) fails.
///
/// If the [`ChainOracle`] is infallible, [`get_chain_spend`] can be used instead.
///
/// [`get_chain_spend`]: Self::get_chain_spend
pub fn try_get_chain_spend<C: ChainOracle>(
&self,
chain: &C,
chain_tip: BlockId,
outpoint: OutPoint,
) -> Result<Option<(ChainPosition<&A>, Txid)>, C::Error> {
if self
.try_get_chain_position(chain, chain_tip, outpoint.txid)?
.is_none()
{
return Ok(None);
}
if let Some(spends) = self.spends.get(&outpoint) {
for &txid in spends {
if let Some(observed_at) = self.try_get_chain_position(chain, chain_tip, txid)? {
return Ok(Some((observed_at, txid)));
}
}
}
Ok(None)
}
/// Get the txid of the spending transaction and where the spending transaction is observed in
/// the `chain` of `chain_tip`.
///
/// This is the infallible version of [`try_get_chain_spend`]
///
/// [`try_get_chain_spend`]: Self::try_get_chain_spend
pub fn get_chain_spend<C: ChainOracle<Error = Infallible>>(
&self,
chain: &C,
static_block: BlockId,
outpoint: OutPoint,
) -> Option<(ChainPosition<&A>, Txid)> {
self.try_get_chain_spend(chain, static_block, outpoint)
.expect("error is infallible")
}
/// List graph transactions that are in `chain` with `chain_tip`.
///
/// Each transaction is represented as a [`CanonicalTx`] that contains where the transaction is
/// observed in-chain, and the [`TxNode`].
///
/// # Error
///
/// If the [`ChainOracle`] implementation (`chain`) fails, an error will be returned with the
/// returned item.
///
/// If the [`ChainOracle`] is infallible, [`list_canonical_txs`] can be used instead.
///
/// [`list_canonical_txs`]: Self::list_canonical_txs
pub fn try_list_canonical_txs<'a, C: ChainOracle + 'a>(
&'a self,
chain: &'a C,
chain_tip: BlockId,
) -> impl Iterator<Item = Result<CanonicalTx<'a, Arc<Transaction>, A>, C::Error>> {
self.full_txs().filter_map(move |tx| {
self.try_get_chain_position(chain, chain_tip, tx.txid)
.map(|v| {
v.map(|observed_in| CanonicalTx {
chain_position: observed_in,
tx_node: tx,
})
})
.transpose()
})
}
/// List graph transactions that are in `chain` with `chain_tip`.
///
/// This is the infallible version of [`try_list_canonical_txs`].
///
/// [`try_list_canonical_txs`]: Self::try_list_canonical_txs
pub fn list_canonical_txs<'a, C: ChainOracle<Error = Infallible> + 'a>(
&'a self,
chain: &'a C,
chain_tip: BlockId,
) -> impl Iterator<Item = CanonicalTx<'a, Arc<Transaction>, A>> {
self.try_list_canonical_txs(chain, chain_tip)
.map(|r| r.expect("oracle is infallible"))
}
/// Get a filtered list of outputs from the given `outpoints` that are in `chain` with
/// `chain_tip`.
///
/// `outpoints` is a list of outpoints we are interested in, coupled with an outpoint identifier
/// (`OI`) for convenience. If `OI` is not necessary, the caller can use `()`, or
/// [`Iterator::enumerate`] over a list of [`OutPoint`]s.
///
/// Floating outputs (i.e., outputs for which we don't have the full transaction in the graph)
/// are ignored.
///
/// # Error
///
/// An [`Iterator::Item`] can be an [`Err`] if the [`ChainOracle`] implementation (`chain`)
/// fails.
///
/// If the [`ChainOracle`] implementation is infallible, [`filter_chain_txouts`] can be used
/// instead.
///
/// [`filter_chain_txouts`]: Self::filter_chain_txouts
pub fn try_filter_chain_txouts<'a, C: ChainOracle + 'a, OI: Clone + 'a>(
&'a self,
chain: &'a C,
chain_tip: BlockId,
outpoints: impl IntoIterator<Item = (OI, OutPoint)> + 'a,
) -> impl Iterator<Item = Result<(OI, FullTxOut<A>), C::Error>> + 'a {
outpoints
.into_iter()
.map(
move |(spk_i, op)| -> Result<Option<(OI, FullTxOut<_>)>, C::Error> {
let tx_node = match self.get_tx_node(op.txid) {
Some(n) => n,
None => return Ok(None),
};
let txout = match tx_node.tx.as_ref().output.get(op.vout as usize) {
Some(txout) => txout.clone(),
None => return Ok(None),
};
let chain_position =
match self.try_get_chain_position(chain, chain_tip, op.txid)? {
Some(pos) => pos.cloned(),
None => return Ok(None),
};
let spent_by = self
.try_get_chain_spend(chain, chain_tip, op)?
.map(|(a, txid)| (a.cloned(), txid));
Ok(Some((
spk_i,
FullTxOut {
outpoint: op,
txout,
chain_position,
spent_by,
is_on_coinbase: tx_node.tx.is_coinbase(),
},
)))
},
)
.filter_map(Result::transpose)
}
/// Get a filtered list of outputs from the given `outpoints` that are in `chain` with
/// `chain_tip`.
///
/// This is the infallible version of [`try_filter_chain_txouts`].
///
/// [`try_filter_chain_txouts`]: Self::try_filter_chain_txouts
pub fn filter_chain_txouts<'a, C: ChainOracle<Error = Infallible> + 'a, OI: Clone + 'a>(
&'a self,
chain: &'a C,
chain_tip: BlockId,
outpoints: impl IntoIterator<Item = (OI, OutPoint)> + 'a,
) -> impl Iterator<Item = (OI, FullTxOut<A>)> + 'a {
self.try_filter_chain_txouts(chain, chain_tip, outpoints)
.map(|r| r.expect("oracle is infallible"))
}
/// Get a filtered list of unspent outputs (UTXOs) from the given `outpoints` that are in
/// `chain` with `chain_tip`.
///
/// `outpoints` is a list of outpoints we are interested in, coupled with an outpoint identifier
/// (`OI`) for convenience. If `OI` is not necessary, the caller can use `()`, or
/// [`Iterator::enumerate`] over a list of [`OutPoint`]s.
///
/// Floating outputs are ignored.
///
/// # Error
///
/// An [`Iterator::Item`] can be an [`Err`] if the [`ChainOracle`] implementation (`chain`)
/// fails.
///
/// If the [`ChainOracle`] implementation is infallible, [`filter_chain_unspents`] can be used
/// instead.
///
/// [`filter_chain_unspents`]: Self::filter_chain_unspents
pub fn try_filter_chain_unspents<'a, C: ChainOracle + 'a, OI: Clone + 'a>(
&'a self,
chain: &'a C,
chain_tip: BlockId,
outpoints: impl IntoIterator<Item = (OI, OutPoint)> + 'a,
) -> impl Iterator<Item = Result<(OI, FullTxOut<A>), C::Error>> + 'a {
self.try_filter_chain_txouts(chain, chain_tip, outpoints)
.filter(|r| match r {
// keep unspents, drop spents
Ok((_, full_txo)) => full_txo.spent_by.is_none(),
// keep errors
Err(_) => true,
})
}
/// Get a filtered list of unspent outputs (UTXOs) from the given `outpoints` that are in
/// `chain` with `chain_tip`.
///
/// This is the infallible version of [`try_filter_chain_unspents`].
///
/// [`try_filter_chain_unspents`]: Self::try_filter_chain_unspents
pub fn filter_chain_unspents<'a, C: ChainOracle<Error = Infallible> + 'a, OI: Clone + 'a>(
&'a self,
chain: &'a C,
chain_tip: BlockId,
txouts: impl IntoIterator<Item = (OI, OutPoint)> + 'a,
) -> impl Iterator<Item = (OI, FullTxOut<A>)> + 'a {
self.try_filter_chain_unspents(chain, chain_tip, txouts)
.map(|r| r.expect("oracle is infallible"))
}
/// Get the total balance of `outpoints` that are in `chain` of `chain_tip`.
///
/// The output of `trust_predicate` should return `true` for scripts that we trust.
///
/// `outpoints` is a list of outpoints we are interested in, coupled with an outpoint identifier
/// (`OI`) for convenience. If `OI` is not necessary, the caller can use `()`, or
/// [`Iterator::enumerate`] over a list of [`OutPoint`]s.
///
/// If the provided [`ChainOracle`] implementation (`chain`) is infallible, [`balance`] can be
/// used instead.
///
/// [`balance`]: Self::balance
pub fn try_balance<C: ChainOracle, OI: Clone>(
&self,
chain: &C,
chain_tip: BlockId,
outpoints: impl IntoIterator<Item = (OI, OutPoint)>,
mut trust_predicate: impl FnMut(&OI, ScriptBuf) -> bool,
) -> Result<Balance, C::Error> {
let mut immature = Amount::ZERO;
let mut trusted_pending = Amount::ZERO;
let mut untrusted_pending = Amount::ZERO;
let mut confirmed = Amount::ZERO;
for res in self.try_filter_chain_unspents(chain, chain_tip, outpoints) {
let (spk_i, txout) = res?;
match &txout.chain_position {
ChainPosition::Confirmed(_) => {
if txout.is_confirmed_and_spendable(chain_tip.height) {
confirmed += txout.txout.value;
} else if !txout.is_mature(chain_tip.height) {
immature += txout.txout.value;
}
}
ChainPosition::Unconfirmed(_) => {
if trust_predicate(&spk_i, txout.txout.script_pubkey) {
trusted_pending += txout.txout.value;
} else {
untrusted_pending += txout.txout.value;
}
}
}
}
Ok(Balance {
immature,
trusted_pending,
untrusted_pending,
confirmed,
})
}
/// Get the total balance of `outpoints` that are in `chain` of `chain_tip`.
///
/// This is the infallible version of [`try_balance`].
///
/// [`try_balance`]: Self::try_balance
pub fn balance<C: ChainOracle<Error = Infallible>, OI: Clone>(
&self,
chain: &C,
chain_tip: BlockId,
outpoints: impl IntoIterator<Item = (OI, OutPoint)>,
trust_predicate: impl FnMut(&OI, ScriptBuf) -> bool,
) -> Balance {
self.try_balance(chain, chain_tip, outpoints, trust_predicate)
.expect("oracle is infallible")
}
}
/// The [`ChangeSet`] represents changes to a [`TxGraph`].
///
/// Since [`TxGraph`] is monotone, the "changeset" can only contain transactions to be added and
/// not removed.
///
/// Refer to [module-level documentation] for more.
///
/// [module-level documentation]: crate::tx_graph
#[derive(Debug, Clone, PartialEq)]
#[cfg_attr(
feature = "serde",
derive(serde::Deserialize, serde::Serialize),
serde(bound(
deserialize = "A: Ord + serde::Deserialize<'de>",
serialize = "A: Ord + serde::Serialize",
))
)]
#[must_use]
pub struct ChangeSet<A = ()> {
/// Added transactions.
pub txs: BTreeSet<Arc<Transaction>>,
/// Added txouts.
pub txouts: BTreeMap<OutPoint, TxOut>,
/// Added anchors.
pub anchors: BTreeSet<(A, Txid)>,
/// Added last-seen unix timestamps of transactions.
pub last_seen: BTreeMap<Txid, u64>,
}
impl<A> Default for ChangeSet<A> {
fn default() -> Self {
Self {
txs: Default::default(),
txouts: Default::default(),
anchors: Default::default(),
last_seen: Default::default(),
}
}
}
impl<A> ChangeSet<A> {
/// Iterates over all outpoints contained within [`ChangeSet`].
pub fn txouts(&self) -> impl Iterator<Item = (OutPoint, &TxOut)> {
self.txs
.iter()
.flat_map(|tx| {
tx.output
.iter()
.enumerate()
.map(move |(vout, txout)| (OutPoint::new(tx.compute_txid(), vout as _), txout))
})
.chain(self.txouts.iter().map(|(op, txout)| (*op, txout)))
}
/// Iterates over the heights of that the new transaction anchors in this changeset.
///
/// This is useful if you want to find which heights you need to fetch data about in order to
/// confirm or exclude these anchors.
pub fn anchor_heights(&self) -> impl Iterator<Item = u32> + '_
where
A: Anchor,
{
let mut dedup = None;
self.anchors
.iter()
.map(|(a, _)| a.anchor_block().height)
.filter(move |height| {
let duplicate = dedup == Some(*height);
dedup = Some(*height);
!duplicate
})
}
}
impl<A: Ord> Merge for ChangeSet<A> {
fn merge(&mut self, other: Self) {
// We use `extend` instead of `BTreeMap::append` due to performance issues with `append`.
// Refer to https://github.com/rust-lang/rust/issues/34666#issuecomment-675658420
self.txs.extend(other.txs);
self.txouts.extend(other.txouts);
self.anchors.extend(other.anchors);
// last_seen timestamps should only increase
self.last_seen.extend(
other
.last_seen
.into_iter()
.filter(|(txid, update_ls)| self.last_seen.get(txid) < Some(update_ls))
.collect::<Vec<_>>(),
);
}
fn is_empty(&self) -> bool {
self.txs.is_empty()
&& self.txouts.is_empty()
&& self.anchors.is_empty()
&& self.last_seen.is_empty()
}
}
impl<A: Ord> ChangeSet<A> {
/// Transform the [`ChangeSet`] to have [`Anchor`]s of another type.
///
/// This takes in a closure of signature `FnMut(A) -> A2` which is called for each [`Anchor`] to
/// transform it.
pub fn map_anchors<A2: Ord, F>(self, mut f: F) -> ChangeSet<A2>
where
F: FnMut(A) -> A2,
{
ChangeSet {
txs: self.txs,
txouts: self.txouts,
anchors: BTreeSet::<(A2, Txid)>::from_iter(
self.anchors.into_iter().map(|(a, txid)| (f(a), txid)),
),
last_seen: self.last_seen,
}
}
}
impl<A> AsRef<TxGraph<A>> for TxGraph<A> {
fn as_ref(&self) -> &TxGraph<A> {
self
}
}
/// An iterator that traverses ancestors of a given root transaction.
///
/// The iterator excludes partial transactions.
///
/// Returned by the [`walk_ancestors`] method of [`TxGraph`].
///
/// [`walk_ancestors`]: TxGraph::walk_ancestors
pub struct TxAncestors<'g, A, F> {
graph: &'g TxGraph<A>,
visited: HashSet<Txid>,
queue: VecDeque<(usize, Arc<Transaction>)>,
filter_map: F,
}
impl<'g, A, F> TxAncestors<'g, A, F> {
/// Creates a `TxAncestors` that includes the starting `Transaction` when iterating.
pub(crate) fn new_include_root(
graph: &'g TxGraph<A>,
tx: impl Into<Arc<Transaction>>,
filter_map: F,
) -> Self {
Self {
graph,
visited: Default::default(),
queue: [(0, tx.into())].into(),
filter_map,
}
}
/// Creates a `TxAncestors` that excludes the starting `Transaction` when iterating.
pub(crate) fn new_exclude_root(
graph: &'g TxGraph<A>,
tx: impl Into<Arc<Transaction>>,
filter_map: F,
) -> Self {
let mut ancestors = Self {
graph,
visited: Default::default(),
queue: Default::default(),
filter_map,
};
ancestors.populate_queue(1, tx.into());
ancestors
}
/// Creates a `TxAncestors` from multiple starting `Transaction`s that includes the starting
/// `Transaction`s when iterating.
#[allow(unused)]
pub(crate) fn from_multiple_include_root<I>(
graph: &'g TxGraph<A>,
txs: I,
filter_map: F,
) -> Self
where
I: IntoIterator,
I::Item: Into<Arc<Transaction>>,
{
Self {
graph,
visited: Default::default(),
queue: txs.into_iter().map(|tx| (0, tx.into())).collect(),
filter_map,
}
}
/// Creates a `TxAncestors` from multiple starting `Transaction`s that excludes the starting
/// `Transaction`s when iterating.
#[allow(unused)]
pub(crate) fn from_multiple_exclude_root<I>(
graph: &'g TxGraph<A>,
txs: I,
filter_map: F,
) -> Self
where
I: IntoIterator,
I::Item: Into<Arc<Transaction>>,
{
let mut ancestors = Self {
graph,
visited: Default::default(),
queue: Default::default(),
filter_map,
};
for tx in txs {
ancestors.populate_queue(1, tx.into());
}
ancestors
}
fn populate_queue(&mut self, depth: usize, tx: Arc<Transaction>) {
let ancestors = tx
.input
.iter()
.map(|txin| txin.previous_output.txid)
.filter(|&prev_txid| self.visited.insert(prev_txid))
.filter_map(|prev_txid| self.graph.get_tx(prev_txid))
.map(|tx| (depth, tx));
self.queue.extend(ancestors);
}
}
impl<'g, A, F, O> Iterator for TxAncestors<'g, A, F>
where
F: FnMut(usize, Arc<Transaction>) -> Option<O>,
{
type Item = O;
fn next(&mut self) -> Option<Self::Item> {
loop {
// we have exhausted all paths when queue is empty
let (ancestor_depth, tx) = self.queue.pop_front()?;
// ignore paths when user filters them out
let item = match (self.filter_map)(ancestor_depth, tx.clone()) {
Some(item) => item,
None => continue,
};
self.populate_queue(ancestor_depth + 1, tx);
return Some(item);
}
}
}
/// An iterator that traverses transaction descendants.
///
/// Returned by the [`walk_descendants`] method of [`TxGraph`].
///
/// [`walk_descendants`]: TxGraph::walk_descendants
pub struct TxDescendants<'g, A, F> {
graph: &'g TxGraph<A>,
visited: HashSet<Txid>,
queue: VecDeque<(usize, Txid)>,
filter_map: F,
}
impl<'g, A, F> TxDescendants<'g, A, F> {
/// Creates a `TxDescendants` that includes the starting `txid` when iterating.
#[allow(unused)]
pub(crate) fn new_include_root(graph: &'g TxGraph<A>, txid: Txid, filter_map: F) -> Self {
Self {
graph,
visited: Default::default(),
queue: [(0, txid)].into(),
filter_map,
}
}
/// Creates a `TxDescendants` that excludes the starting `txid` when iterating.
pub(crate) fn new_exclude_root(graph: &'g TxGraph<A>, txid: Txid, filter_map: F) -> Self {
let mut descendants = Self {
graph,
visited: Default::default(),
queue: Default::default(),
filter_map,
};
descendants.populate_queue(1, txid);
descendants
}
/// Creates a `TxDescendants` from multiple starting transactions that includes the starting
/// `txid`s when iterating.
pub(crate) fn from_multiple_include_root<I>(
graph: &'g TxGraph<A>,
txids: I,
filter_map: F,
) -> Self
where
I: IntoIterator<Item = Txid>,
{
Self {
graph,
visited: Default::default(),
queue: txids.into_iter().map(|txid| (0, txid)).collect(),
filter_map,
}
}
/// Creates a `TxDescendants` from multiple starting transactions that excludes the starting
/// `txid`s when iterating.
#[allow(unused)]
pub(crate) fn from_multiple_exclude_root<I>(
graph: &'g TxGraph<A>,
txids: I,
filter_map: F,
) -> Self
where
I: IntoIterator<Item = Txid>,
{
let mut descendants = Self {
graph,
visited: Default::default(),
queue: Default::default(),
filter_map,
};
for txid in txids {
descendants.populate_queue(1, txid);
}
descendants
}
}
impl<'g, A, F> TxDescendants<'g, A, F> {
fn populate_queue(&mut self, depth: usize, txid: Txid) {
let spend_paths = self
.graph
.spends
.range(tx_outpoint_range(txid))
.flat_map(|(_, spends)| spends)
.map(|&txid| (depth, txid));
self.queue.extend(spend_paths);
}
}
impl<'g, A, F, O> Iterator for TxDescendants<'g, A, F>
where
F: FnMut(usize, Txid) -> Option<O>,
{
type Item = O;
fn next(&mut self) -> Option<Self::Item> {
let (op_spends, txid, item) = loop {
// we have exhausted all paths when queue is empty
let (op_spends, txid) = self.queue.pop_front()?;
// we do not want to visit the same transaction twice
if self.visited.insert(txid) {
// ignore paths when user filters them out
if let Some(item) = (self.filter_map)(op_spends, txid) {
break (op_spends, txid, item);
}
}
};
self.populate_queue(op_spends + 1, txid);
Some(item)
}
}
fn tx_outpoint_range(txid: Txid) -> RangeInclusive<OutPoint> {
OutPoint::new(txid, u32::MIN)..=OutPoint::new(txid, u32::MAX)
}